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Abstract: Factor analysis (FA) models are used in data dimensionality reduction problems where 

the variability among observed variables can be described through a smaller number of unobserved 

latent variables. This approach is often used to estimate the multidimensionality of wellbeing. We 

employ FA models and use multivariate EBLUP (MEBLUP) to predict a vector of means of factor 

scores representing wellbeing for small areas. We compare this approach to the standard approach 

whereby we use SAE (univariate and multivariate) to estimate a dashboard of EBLUPs on original 

variables and then averaged. Our simulation study shows that the use of factor scores provides 

estimates with lower variability than weighted and simple averages of standardised MEBLUPs and 

univariate EBLUPs. Moreover, we find that when the correlation in the observed data is taken into 

account before small area estimates are computed multivariate modelling does not provide large 

improvements in the precision of the estimates over the univariate modelling. We close with an 

application using the EU Survey on Income and Living Conditions data. 
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1. Introduction 

The international scientific community, national statistical agencies, and international organisations 

have pointed out the multidimensional nature of wellbeing as developed under the UN initiative of 

the Sustainable Development Goals (United Nations, 2017). In particular, government agencies in 

European Union (EU) countries have been developing wellbeing measurement frameworks. One 

example is the Italian Statistical Institute (ISTAT) and National Council for Economics and Labour 

(CNEL) “Equitable and Sustainable Wellbeing (BES)” project. These frameworks generally consist 

of many dimensions (also called domains), each with many single indicators associated to them. To 

reduce data dimensionality, summary statistics in the form of a composite estimator may be helpful 

for policy makers to inform policies targeted to improving wellbeing. There is an ongoing debate 

about the appropriateness of using composite indicators versus a dashboard of single indicators: 

Ravallion (2011) points out that single multidimensional indicators lead to a loss of information, 

while Yalonetzky (2012), on the other hand, stresses that composite estimates are necessary when 

the goal is measuring multiple deprivations (or wellbeing) within the same unit (individual or 

household). In order to measure multidimensional wellbeing, analysing a dashboard of single 

indicators (means, totals, ratios, etc.) from the initial set of variables is a standard approach. 

However, if many indicators need to be analysed, the result may be difficult to interpret.  Factor 

analysis (FA) models can be used to reduce data dimensionality and produce composite estimates. 

In these models, the variability among observed correlated variables is described through a smaller 

number of unobserved latent variables (factors).  

 

In order to inform policies based on wellbeing measurement, there is a need to obtain reliable and 

accurate indicators at a local area level since wellbeing phenomena are heterogeneous and have 

different and varying features in territorial areas. This leads to the need for advanced statistical tools 

to provide reliable estimates of wellbeing (Lemmi et al., 2016) at the small area level. However, we 

face the issue of data reliability at local area levels since data on income, poverty, and quality of life 
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typically obtained from national surveys are usually not available or not reliable at a small area 

level. One way to overcome this problem is through model-based inference such as small area 

estimation (SAE) (Rao and Molina, 2015). Small area estimates ‘borrow strength’ from related 

small areas through the use of auxiliary variables available at the population level and other related 

(correlated) dependant variables. As an example, one of the most important social surveys available 

in EU countries for investigating social phenomena is the Statistics for Income and Living 

Conditions (EU-SILC). This data can be used to produce accurate direct estimates only at the 

Nomenclature of Territorial Units for Statistics (NUTS) 2 level (Giusti et al., 2012a) while any areas 

below this level are unplanned domains with small or even zero sample sizes.   

Multivariate SAE is a research field still under investigation and there is an important gap about 

social exclusion and wellbeing measurement in a multivariate SAE setting. In the unit-level SAE 

approach, Fuller and Harter (1987) propose the use of multivariate mixed effects modelling in order 

to predict a vector of means of multiple characteristics of a finite population. Datta et al. (1999) 

develop a multivariate empirical best linear unbiased predictor (MEBLUP) and empirical bayes 

(EB) approach for small areas mean vectors. They also propose an approximation for the mean 

squared error and show a gain in efficiency obtainable by using multivariate mixed effects models 

compared to univariate models since the correlations between the vector components is taken into 

account.  More recently, Molina (2009) deals with the multivariate mixed effects model under a 

logarithmic transformation, and Baillo and Molina (2009) studied a particular case of the 

multivariate nested error regression model for uncorrelated random effects.  

 

In the classical univariate unit-level SAE approach, the use of the Battese, Harter, and Fuller (BHF) 

model (Battese et al., 1988) is widely used. The model is a mixed effects model and allows taking 

into account between-area variability in the prediction stage based on auxiliary information 

available for the population, such as a register or census. The BHF model can be naturally extended 

to the multivariate case, where a vector of K means becomes the new object of statistical inference.   
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Moretti et al. (2018b) evaluate the use of Factor Analysis (FA) models in SAE in order to reduce 

data dimensionality for economic wellbeing indicators and show that they can provide good 

estimates of multidimensional wellbeing phenomena at small areas. A dashboard of single 

indicators estimated at the small area level using a univariate SAE approach was compared to small 

area estimates of a single composite indicator arising from the FA model. They showed a gain in 

terms of the reduction in mean squared error when comparing the estimated mean factor scores with 

the use of an averaged dashboard of single indicators. According to the FA assumptions, the 

composite indicators derived from the latent factors are linearly related to the observed variables, 

and hence have the same economic interpretation (Moretti et al., 2018b). As mentioned, Moretti et 

al. (2018b) only consider a single latent variable. In this paper, we extend this work by studying the 

case of more than one latent factor using a multivariate empirical best linear unbiased predictor 

(MEBLUP) for factor score mean predictions. This new approach is compared to the averaging of 

dashboard small area estimates from the original variables using both a univariate and multivariate 

SAE approach.  

 

In summary, this paper will investigate the following comparisons: 

a) Comparison of EBLUP and MEBLUP of single observed response variables;  

b) Comparison of EBLUP and MEBLUP of multidimensional latent factors as measured by 

factor scores;    

c) Comparison of the use of latent factors in (b) to a dashboard of single observed response 

variables expressed as a simple or weighted average of standardised EBLUP and MEBLUP 

from (a).  

 

This paper is organised as follows: in section 2 we introduce the multivariate SAE approach for a 

mean vector and review the multivariate EBLUP (MEBLUP) under the mixed effects model. In 
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section 3 we discuss the data dimensionality reduction problem via a Factor Analysis (FA) model.    

In section 4 we present a simulation study to evaluate our approach and address the comparisons (a) 

to (c) above. In section 5 we consider the multidimensionality issue of housing deprivation in Italy 

through an application using Italian EU-SILC data. We conclude our work in section 6 with a final 

discussion on the main findings and future work. 

 

2. Multivariate Empirical Best Linear Unbiased Predictor (MEBLUP)  

Let 𝑑 = 1, … , 𝐷 denote the small areas for which we want to compute estimates, and let us consider 

a sample 𝑠 ⊂ Ω of size 𝑛 drawn from a target finite population Ω of size 𝑁. The non-sampled units, 

𝑁 − 𝑛, are denoted by 𝑟, hence, 𝑠𝑑 = 𝑠⋂Ω𝑑 is the sub-sample from the small area 𝑑 of size 𝑛𝑑, 𝑛 =

∑ 𝑛𝑑
𝐷
𝑑=1 , and 𝑠 =∪𝑑 𝑠𝑑. 𝑟𝑑 denotes the non-sampled units for small area 𝑑 of size 𝑁𝑑 − 𝑛𝑑 .  

 

Considering 𝒚𝑑𝑖 = (𝒚𝑑𝑖1, … , 𝒚𝑑𝑖𝐾)′, which denotes the 𝐾 × 1 vector of interest for 𝑖 =

1, … , 𝑁𝑑, 𝑑 = 1, … , 𝐷, we can write the target means vector as follows: 

�̅�𝑑 = 𝑁𝑑
−1 ∑ 𝒚𝑑𝑖

𝑁𝑑

𝑖=1

. 

 

(1) 

Hence, because of linearity of this quantity, each area means vector can be split into sampled and 

non-sampled (out-of-sample) elements as follows:  

�̅�𝑑 = 𝑁𝑑
−1 (∑ 𝒚𝑑𝑖

𝑖∈𝑠𝑑

+ ∑ 𝒚𝑑𝑖

𝑖∈𝑟𝑑

). 

 

(2) 

The quantity ∑ 𝒚𝑑𝑖𝑖∈𝑟𝑑
 is not observed, so it needs to be predicted. In this work we propose the use 

of the multivariate mixed effects model, suggested in SAE by Fuller and Harter (1987) in order to 

predict the out-of-sample observations.  

 

2.1 Multivariate nested-error linear regression model 

We assume that unit-specific auxiliary variables 𝒙𝑖𝑑 are available for all the population elements in 
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each small area d coming from a census or register. We also assume that the following linear model 

relates the response variables to the auxiliary variables as follows: 

𝒚𝑑𝑖 = 𝒙𝑑𝑖𝜷 + 𝒖𝑑 + 𝒆𝑑𝑖 , 𝑑 = 1, … , 𝐷, 𝑖 = 1, … , 𝑁𝑑, 

𝒖𝑑 ∼ 𝑁𝐾(𝟎, 𝜮𝑢), 𝒆𝑑𝑖 ∼ 𝑁𝐾(𝟎, 𝜮𝑒) 𝒖𝑑 𝑎𝑛𝑑 𝒆𝑑𝑖  𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

 

(3) 

where 𝒙𝑑𝑖 is a p-dimensional row vector of auxiliary variables, 𝜷 is a 𝑝 × 𝐾 matrix of unknown 

regression coefficients, 𝒖𝑑 is a K-dimensional row vector of area effects, and 𝒆𝑑𝑖 is K-dimensional 

row vector of the individual effects; 𝒖𝑑 and 𝒆𝑑𝑖 are assumed to be independent and normally 

distributed, 𝑁𝐾 denotes a K-variate Normal distribution. Here, the 𝐾 × 𝐾 positive-definite matrices 

𝜮𝑢 and 𝜮𝑒 are the variance-covariance matrices of the area effects and individual effects, 

respectively. 

Under model (3) we can write the realised mean of area d as: 

�̅�𝑑 = �̅�𝑑𝜷 + 𝒖𝑑 (4) 

�̅�𝑑  denotes the known population covariates means for area d. 

2.2 Estimation and prediction of unknown parameters 

For simplicity we now make use of the following notation (Fuller and Harter, 1987): 

𝒀′ = (𝒚11, 𝒚12, . . . , 𝒚1,𝑛1
, . . . , 𝒚𝐷1, . . . , 𝒚𝐷,𝑛𝐷

), 

𝑿′ = [(𝑰𝐾⨂𝒙11)′, (𝑰𝐾⨂𝒙12)′, . . . , (𝑰𝐾⨂𝒙1,𝑛1
)′, . . . , (𝑰𝐾⨂𝒙𝐷,𝑛𝐷

)′], 

where 𝒀 denotes the vector of NK observations on 𝒚𝑑𝑖 where 𝒚𝑑𝑖 is defined above, and 𝑿 denotes 

the 𝑁𝐾 × 𝑝𝐾 matrix of covariates. The operator ⨂ denotes the Kronecker product, and 𝑰 denotes 

the identity matrix.  

Let us now denote the covariance matrix of 𝒀 by 
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𝑽(𝒀) = 𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔(𝑽11, … , 𝑽𝐷𝐷) (5) 

where 𝑽𝑑𝑑 = (𝑱𝑑𝑑⨂𝚺𝑢) + (𝑰𝑛𝑑
⨂𝚺𝑒). 𝑱𝑑𝑑is the 𝑛𝑑 × 𝑛𝑑  matrix with every element equal to one 

and 𝑰𝑛𝑑
 is an identity matrix. The operator ⨂ denotes the Kronecker product. The empirical best 

linear unbiased estimator of the regression coefficients is given by: 

vec �̂� = (𝑿′�̂�−1𝑿)
−1

𝑿′�̂�−1𝒀. (6) 

The empirical best linear unbiased predictors of the random effects are given by the following 

expression 

�̂�𝑑 = (�̅�𝑑 − 𝒙𝑑�̂�)[(�̂�𝑢 + 𝑛𝑑
−1�̂�𝑒)

−1
�̂�𝑢, 𝑑 = 1, … , 𝐷 (7) 

�̂�𝑢and �̂�𝑒 are estimators of 𝚺𝑢 and 𝚺𝑒 (we refer to Schafer and Yucel (2002) for the algorithm and 

its implementation). 

The Multivariate Empirical Best Linear Unbiased Predictor (MEBLUP) of �̅�𝑑 is given by: 

 

�̂̅�𝑑

𝑀𝐸𝐵𝐿𝑈𝑃
= �̅�𝑑 �̂� + �̂�𝑑 = �̅�𝑑 �̂� + (�̅�𝑑 − �̅�𝑑�̂�)[(�̂�𝑢 + 𝑛𝑑

−1�̂�𝑒)
−1

�̂�𝑢], 𝑑 = 1, … , 𝐷. (8) 

where �̅�𝑑 denotes the sample auxiliary means for area d. In case of areas with 𝑛𝑑 = 0 it holds that 

�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃 = �̂̅�𝑑

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
= �̅�𝑑 �̂�. 

 

The mean squared error of (8) can be estimated via parametric bootstrap proposed by Moretti et al. 

(2018a). The mean squared error of �̂̅�𝑑
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐

 is given by the error due to prediction as in usual 

regression models, and it can be approximated via bootstrap using only the synthetic part of the 

model. For a complete discussion on techniques to estimate the MSE we refer to Rao and Molina 

(2015). 
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3. Data dimensionality reduction and the use of factor scores 

Composite indicators are measures for multidimensional phenomena that cannot be studied by the 

use of single indicators. Due to their complexity, composite indicators should be based on 

theoretical frameworks and/or definitions to combine single indicators in a way which reflects the 

phenomena structure (OECD, 2004). A vast literature on multivariate statistical analysis techniques 

is available; for a formal review on the main methods we refer to Hardle and Simar (2012). In this 

paper we assume that latent constructs exist for a wellbeing domain and use FA methods to reduce 

the data dimensionality from the original variables.  

3.1. The factor analysis model 

Let us consider a 𝐾 × 1 vector of observed variables 𝒀 and we assume that they are linearly 

dependent on a vector of factors 𝒇, with dimension 𝑀 × 1 (M<K). Thus, we can write the following 

linking model (Kaplan, 2009): 

𝒀 = 𝚲𝒇 + 𝝐 (10) 

where 𝝐 denotes a vector 𝐾 × 1 containing both measurement and specific errors, and 𝚲 is a 𝐾 × 𝑀 

matrix of factor loadings.  

It is assumed that: 

i) 𝐸(𝝐) = 𝟎, 

ii) 𝐸(𝒇) = 𝟎, 

iii) 𝐶𝑜𝑣(𝝐, 𝒇) = 𝟎. 

Therefore, the covariance matrix of the observed data is given by: 

𝚺 = 𝐶𝑜𝑣(𝒀𝒀′) = 𝚲𝐸(𝒇𝒇′)𝚲′ + 𝐸(𝝐𝝐′) = 𝚲𝚽𝚲′ + 𝚯, (11) 

where 𝚽 is a 𝑀 × 𝑀 matrix of factor variances and covariances, and 𝚯 is a 𝐾 × 𝐾 diagonal matrix 

of specific variances. 
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The maximum-likelihood (ML) approach is used to estimate the model parameters. ML equations 

under FA models are complicated to solve, so iterative numerical algorithms are proposed in the 

literature (see e.g. Mardia et al., 1979). The log-likelihood function ℓ of the data 𝒀 can be written as 

follows (Hardle and Simar, 2012): 

ℓ(𝒀; 𝚲, 𝚯) =
𝑛

2
[log{|2𝜋(𝚲𝚲′ + 𝚯)|} + tr{(𝚲𝚲′ + 𝚯)−1�̂�}], (12) 

where �̂� denotes the empirical covariance of 𝒀 (estimator of 𝚺). 

After the model parameters are estimated, the factor scores are also estimated. Factor scores are 

defined as estimates of the unobserved latent variables for each unit i. For a review of estimated 

factor scores we refer to Johnson and Wichern (1998). 

Using the regression method, the individual factor scores estimate for 𝑖 = 1, … , 𝑛 are given by 

(Hardle and Simar, 2012) where �̂� denotes the estimator of 𝚲: 

�̂�𝑖 = �̂�′�̂�−1𝒚𝑖. (13) 

In the presence of both binary and continuous observed variables under a maximum likelihood 

estimation approach, the factor scores may be estimated via the expected posterior method 

described in Muthén (2004) and applied in Mplus7.4 (Muthén and Muthén, 2012). 

 

4. Simulation study 

This simulation study is designed to assess the feasibility of the multivariate MEBLUP compared to 

the univariate EBLUP when considering the problem of data dimensionality reduction and the 

comparisons (a) to (c) mentioned in the introduction.  

The overall results of the simulation study are evaluated via the empirical root mean squared error 

(RMSE) described in Section 4.2. 
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4.1. Generating the population 

We generate a single population with 𝑁 = 20,000, 𝐷 = 80, and 130 ≤ 𝑁𝑑 ≤ 420. 𝑁𝑑 are 

generated from the discrete uniform distribution, 𝑁𝑑 ∼ 𝒰(𝑎 = 130, 𝑏 = 420) with ∑ 𝑁𝑑
𝐷
𝑑=1 =

20,000. 𝒚𝑑𝑖 observations are generated according to the multivariate mixed effects model shown in 

formula (3). The simulation parameters 𝚺𝑒 and 𝜷 are estimated from real Australian Agricultural 

and Grazing Industries Survey data (Australia, Bureau of Agricultural Economics, 1978; Molina, 

2009). We define the following covariance matrix 𝚺𝑒: 

 

𝚺𝑒 = [

0.386 𝜎12 𝜎13 𝜎14

𝜎21 0.414 𝜎23 𝜎24

𝜎31 𝜎32 0.213 𝜎34

𝜎41 𝜎42 𝜎43 0.301

]. 

Let 𝑟𝑢 and 𝑟𝑒 denote the correlation coefficients associated with the covariance matrices 𝜮𝑢 and 𝜮𝑒 

respectively. Hence, 𝜎𝑙𝑗 with 𝑙 ≠ 𝑗 in 𝜮𝑒 varies according to 𝑟𝑒. For example, 𝜎12 =

𝑟𝑒√0.386 ∙ 0.414  in the above matrix 𝜮𝑒. The intra-class correlation coefficients are fixed as 

follows: 𝐼𝐶𝐶𝑘 = {0.05, 0.1, 0.3}. Therefore the variances of 𝜮𝑢 are generated as functions of the 

variances of 𝜮𝑒  as follows: 𝐼𝐶𝐶𝑘 = 𝜎𝑢𝑦𝑘
2 /(𝜎𝑢𝑦𝑘

2 + 𝜎𝑒𝑦𝑘
2 ), where k=1,…,4 denote the kth component 

of 𝒚𝑑𝑖.The covariances for 𝜮𝑢 are then calculated as described above for 𝜮𝑒.    

 

In this simulation we study the following combinations of 𝑟𝑢 and 𝑟𝑒: 𝑟𝑢 = 𝑟𝑒 = 0.2,   𝑟𝑢 =

0.2 and 𝑟𝑒 = 0.7,  𝑟𝑢 = −0.2 and 𝑟𝑒 = 0.7.  

The 𝜷 regression coefficients matrix is given by the following: 

𝜷 = [

1.001 0.386 0.141
1.187 0.377 0.133
1.086 0.035 0.024
0.114 0.009 0.002

]. 

The uncorrelated covariates are generated from discrete Uniform distributions, 

𝑋1~𝑑𝑈𝑛𝑖𝑓(20000, 145,459), 𝑋2~𝑑𝑈𝑛𝑖𝑓(20000,55,345). 

On the generated population, we run two Confirmatory Factor Analysis (CFA) models described in 
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(6): the first model for one latent factor and the second model for two latent factors. This is based 

on an initial explanatory analysis where we identified that both CFA models provide a good fit to 

the generated population. We show in Appendix A the goodness of fit statistics of the two CFA 

models on the generated population for the simulation study. 

 

Figure 1 shows how the factors relate to the observed variables for the case of two latent factors in 

the CFA model.  For each latent factor in both CFA models, we estimate the population factor scores 

𝒇𝑖 , 𝑖 = 1, … , 𝑁 from (13).    

 

 

Figure 1 Relationship between the factors and observed variables two-factor CFA. 

As mentioned in Moretti et al. (2018b), although FA models have been developed to account for 

multilevel structures, it is not possible to fit these models for unplanned domains given small and 

zero sample size domains. We leave this for future work. 

We also calculate the following true values based on the generated population for each of the small 

areas d: the factor score means, simple averages of the standardised observed variable means, and 

weighted averages using the CFA loadings denoted by �̅�𝑑𝑚
𝑆_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

 and �̅�𝑑𝑚
𝑊_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

, respectively, 

where m denotes the mth factor and the averages are taken over those variables associated to the   

mth factor. The true means are calculated from the generated population to be used in evaluations of 

the RMSE and BIAS.  

For example, the weighted average (based on the factor loadings) of standardised EBLUPs (which 

have been transformed with zero mean and unit variance) for area d for the variables 𝑘 = 1, … , 𝐾 

that contribute to the mth factor is given by: 

Factor 1

y1 y2

Factor 2

y3 y4
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�̂̅�𝑑𝑚
𝐸𝐵𝐿𝑈𝑃_𝑊_𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠

=
∑ (�̂̅�𝑑𝑘

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝐸𝐵𝐿𝑈𝑃𝜆𝑘𝑚)𝐾
𝑘=1

∑ �̂�𝑘𝑚
𝐾
𝑘=1

, 𝑑 = 1, … , 𝐷, 𝑚 = 1, … , 𝑀          (14)  

where  �̂�𝑘 is the estimated factor loading for variable k related to factor m.   

4.2. Simulation steps 

1. Draw 𝑆 = 500 samples using simple random sampling without replacement from the 

generated population;  

2. Fit the one-factor and two-factor CFA model on each sample and estimate the EBLUP factor 

score means from each model for each area d in each sample. In addition to the  separate 

EBLUP factor score means for each of the factors under the two-factor CFA model, estimate 

the MEBLUP factor score means;   

3. The EBLUP and MEBLUP for each of the observed variables and vectors Y are also 

estimated in order to construct simple averages of the standardised small area EBLUPs and 

MEBLUPs,  and a weighted average using the factor loadings estimated in 2; 

4. As the true values are known from the generated population, we can calculate the root mean 

squared error and the bias for each area d for the different types of estimates: EBLUPs and 

MEBLUPs of factor score means; and simple and weighted averages of EBLUPs and 

MEBLUPs. For example, for the univariate EBLUPs of the observed variable mean k, the 

root mean squared error is:  

𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃) = √𝑆−1 ∑(�̂̅�𝑑𝑘𝑠

𝐸𝐵𝐿𝑈𝑃 −  �̅�𝑑𝑘
𝑇𝑅𝑈𝐸)

2

 

𝑆

𝑠=1

 

 

 

(15) 

           where  �̅�𝑑𝑘
𝑇𝑅𝑈𝐸  denotes the true mean of the 𝑌𝑘 variable for the dth area. 

 

4.3. Results of the simulation study 

4.3.1. Comparison (a) of  EBLUP and MEBLUP of single observed response variables 
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Table 1 shows the percentage relative reduction (in terms of RMSE) of the multivariate MEBLUP 

over the univariate EBLUP under comparison (a) for single observed response variables. The 

percentage relative reduction for each area is calculated as follows Δ𝑑𝑘 =

𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝑀𝐸𝐵𝐿𝑈𝑃)−𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘

𝐸𝐵𝐿𝑈𝑃)

𝑅𝑀𝑆𝐸(�̂̅�𝑑𝑘
𝐸𝐵𝐿𝑈𝑃)

∙ 100, 𝑘 = 1, … , 𝐾, d=1,...,D.  Δ𝑑𝑘 estimates are then averaged across 

the areas to provide summary statistics for each variable k: Δ𝑘 =  
1

𝐷
∑ Δ𝑑𝑘𝑑 .   

 

 

 

 

  Scenario 

𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

0.05 y1 -3.50 -9.21 -1.04 

 y2 -3.00 -10.81 -1.02 

 y3 -3.00 -12.22 -0.30 

 y4 -2.00 -12.01 0.00 

0.1 y1 -6.00 -18.42 -0.31 

 y2 -3.41 -18.33 -0.20 

 y3 -6.00 -19.20 -0.03 

 y4 -6.02 -16.90 -0.09 

0.3 y1 -8.00 -20.00 0.00 

 y2 -7.51 -19.20 0.00 

 y3 -7.03 -21.11 0.00 

 y4 -6.52 -18.90 0.00 

Table 1 Percentage relative reduction (%) in RMSE of MEBLUP over EBLUP ( 𝛥𝑘) for single 

observed response variables averaged over all areas  

When the correlations 𝑟𝑒 and 𝑟𝑢 are equal to 0.2, we see that the MEBLUP does not provide much 

improvement over the univariate EBLUP. Indeed, when 𝑟𝑒 and 𝑟𝑢 tend to 0 we are close to the 

independence case, whereby univariate analysis provide the same results as the multivariate one 

(Datta et al., 1999). When correlation coefficients associated to 𝚺𝑒 are large, MEBLUP provides 

more efficient predictions than EBLUP. As it has already been noted by Datta et al. (1999), these 

gains tend to become large when the signs of 𝑟𝑒 and 𝑟𝑢 are opposite. The gains in efficiency are 

good even when the intra-class correlation is low, although we have bigger improvements with 
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respect to the RMSE when the intra-class correlation increases.   

4.3.2. Comparison (b) of EBLUP and MEBLUP of multidimensional latent factors (two-

factor CFA model)  as measured by factor scores      

Table 2 shows the estimates of the correlation terms and the intra-class correlations resulting from 

the multivariate modelling of latent factors that were estimated by the two-factor CFA model. It can 

be seen that the estimated correlation terms and ICC of the two latent factors increase compared to 

the correlation structure of the original variables when 𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 and 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2. 

Under the case  𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 there are mixed results for the correlation term of 𝑟𝑢between the 

two factors and we see a decrease in the estimated ICC.  

  Scenario 

  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

 𝑰𝑪𝑪𝒌 0.05 0.1 0.3 0.05 0.1 0.3 0.05 0.1 0.3 

F
a
ct

o
r 

sc
o
re

s 

es
ti

m
a
te

s 

�̂�𝑒 0.85 0.70 0.60 0.75 0.70 0.62 0.53 0.63 0.75 

�̂�𝑢 0.95 0.90 0.95 0.95 0.88 0.90 0.00 0.20 0.59 

𝐼𝐶�̂�𝑓1
 0.16 0.24 0.51 0.20 0.20 0.53 0.04 0.06 0.09 

𝐼𝐶�̂�𝑓2
 0.15 0.19 0.50 0.20 0.18 0.48 0.06 0.04 0.09 

Table 2 �̂�𝑒, �̂�𝑢, and 𝐼𝐶�̂� of factor scores under multivariate MEBLUP averaged across samples. 

 

Table 3 shows the percentage relative reduction (in terms of RMSE) of the multivariate MEBLUP 

over the univariate EBLUP of the factor scores. The case 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 produces smaller ICCs. 

This means that the MEBLUP has little gain over the univariate EBLUP. The case of 𝑟𝑒 = 0.7, 𝑟𝑢 =

−0.2 and 𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 produce high factor correlations and higher ICCs; thus, increased 

efficiency of MEBLUP over the EBLUP.   Note that the  values of the RMSE of the factor scores 

means SAE predictions are shown in Table 6. 

  Scenario 

𝑰𝑪𝑪𝒌  𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐 𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐 

0.05 Factor scores 1 -2.44 -2.50 0.00 

 Factor scores 2 -2.50 -2.56 0.00 

0.1 Factor scores 1 -2.56 -3.13 0.00 

 Factor scores 2 -3.33 -2.86 0.00 
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0.3 Factor scores 1 -4.48 -5.56 0.00 

 Factor scores 2 -5.56 -6.67 0.00 

Table 3 Percentage relative reduction (%) in terms of RMSE of MEBLUP over EBLUP ( 𝛥𝑘), two-

factor CFA model  

4.3.3. Comparison (c) of the use  of  latent factors (b) to simple and weighted averages of 

standardised EBLUP and MEBLUP estimates 

One-Factor CFA Model  

Table 5 provides the values of the RMSE of the estimates under consideration in comparison (c): 

simple and weighted averages of standardised original variables for EBLUPs and MEBLUPs and 

the one-factor CFA factor score means from the univariate SAE EBLUP. Table 4 shows the 

percentage relative reduction in RMSE for the simple and weighted averages of standardised 

MEBLUPs over EBLUPs shown in Table 4.   

  Scenario 

𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

  EBLUP MEBLUP EBLUP MEBLUP EBLUP MEBLUP 

0.05 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.081 - 0.080 - 0.079 - 

 𝑠𝑖𝑚𝑝𝑙𝑒 0.267 0.244 0.231 0.181 0.230 0.228 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.230 0.220 0.207 0.164 0.185 0.184 

0.1 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.070 - 0.061 - 0.063 - 

 𝑠𝑖𝑚𝑝𝑙𝑒 0.246 0.225 0.250 0.180 0.207 0.205 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.180 0.190 0.224 0.162 0.190 0.189 

0.3 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.065 - 0.039 - 0.078 -  

 𝑠𝑖𝑚𝑝𝑙𝑒 0.200 0.177 0.181 0.160 0.198 0.197  

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.175 0.157 0.163 0.144 0.185 0.185  

Table 4 RMSE of  factor scores means from one-factor CFA model, and simple and weighted 

averages of standardised original variables EBLUP/MEBLUP(Bold values highlight smaller RMSE   

for factor score means under EBLUP).   

 Scenario 

𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

0.05 𝑠𝑖𝑚𝑝𝑙𝑒 -8.61 -21.65 -0.87 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 -4.35 -20.77 -0.54 

0.1 𝑠𝑖𝑚𝑝𝑙𝑒 -8.54 -28.00 0.00 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 -5.56 -27.68 0.00 

0.3 𝑠𝑖𝑚𝑝𝑙𝑒 -11.50 -11.60 -0.51  

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 -10.29 -11.66 0.00  
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Table 5 Percentage relative reduction (%) in terms of RMSE of simple and weighted averages of 

standardised MEBLUP over EBLUP  ( 𝛥𝑘).     

Looking at Table 5, we can see that the EBLUP of the factor scores under the one-factor CFA model 

are all smaller than the simple and weighted averages of single variables under both the EBLUP and 

MEBLUP approaches. This confirms findings in Moretti et al. (2018b), which showed that factor 

score means estimated through EBLUP are more efficient compared to the dashboard approach of 

taking averages of indicators while both approaches have the same economic interpretation. In 

addition, the MEBLUP approach for the single variables provides estimates of simple and weighted 

averages with lower variability than the case where the single variables are estimated under the 

univariate EBLUP from Table 5. We do not see MSE reductions when the correlations in the 

variance-covariance matrices are small, which is the case when 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 .  

Two-Factor CFA Model  

Table 7 provides the values of the RMSE of each of the estimates under consideration in 

comparison (c): simple and weighted averages of standardised original variables for EBLUPs and 

MEBLUPs associated to each of the factors, and the two-factor CFA factor score means from the 

univariate and multivariate SAE.   Table 6 shows the percentage relative reduction in RMSE for 

simple and weighted averages of standardised MEBLUPs over EBLUPs for those variables 

associated to each of the factors in the two-factors CFA model as shown in Table 6. Note that the 

results of the percentage relative reduction in RMSE for the  factor score means estimated by 

EBLUP and MEBLUP are shown in Table 3 and discussed in Section 4.3.2.    

  Scenario 

 𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

   EBLUP MEBLUP EBLUP MEBLUP EBLUP MEBLUP 

F
a
ct

o
r 

1
 

0.05 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.082 0.080 0.080 0.078 0.032 0.032 

 𝑠𝑖𝑚𝑝𝑙𝑒 0.380 0.360 0.360 0.340 0.350 0.340 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.378 0.358 0.353 0.330 0.340 0.330 

0.1 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.078 0.076 0.064 0.062 0.034 0.034 

 𝑠𝑖𝑚𝑝𝑙𝑒 0.450 0.410 0.450 0.330 0.400 0.402 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.430 0.390 0.440 0.340 0.395 0.394 

0.3 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.067 0.064 0.036 0.034 0.048 0.048  

 𝑠𝑖𝑚𝑝𝑙𝑒 0.600 0.530 0.600 0.500 0.356 0.355  
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 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.589 0.519 0.530 0.435 0.346 0.345  
F

a
ct

o
r 

2
 

0.05 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.040 0.039 0.039 0.038 0.012 0.012  

 𝑠𝑖𝑚𝑝𝑙𝑒 0.487 0.468 0.443 0.350 0.462 0.460  

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.485 0.462 0.440 0.344 0.450 0.449  

0.1 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.030 0.029 0.035 0.034 0.022 0.022  

 𝑠𝑖𝑚𝑝𝑙𝑒 0.400 0.364 0.470 0.350 0.400 0.400  

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.388 0.345 0.465 0.341 0.375 0.375  

0.3 𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 0.036 0.034 0.030 0.028 0.028 0.028  

 𝑠𝑖𝑚𝑝𝑙𝑒 0.360 0.310 0.312 0.250 0.258 0.258  

 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 0.350 0.305 0.305 0.253 0.245 0.245  

Table 6 RMSE of factor score means from two factor CFA model and simple and weighted averages 

of standardized original variables EBLUP/ MEBLUP (Bold values highlight smaller RMSE for 

factor score means under EBLUP/MEBLUP).    

  Scenario 

𝑰𝑪𝑪𝒌  𝑟𝑒 = 0.7, 𝑟𝑢 = 0.2 𝑟𝑒 = 0.7, 𝑟𝑢 = −0.2 𝑟𝑒 = 0.2, 𝑟𝑢 = 0.2 

  Simple Weighted Simple Weighted Simple Weighted 

0.05 Factor 1 -5.26 -5.29 -5.56 -6.52 -2.86 -2.94 

 Factor 2 -3.90 -4.74 -20.99 -21.82 -0.43 -0.22 

0.1 Factor 1 -8.89 -9.30 -26.67 -22.73 -0.50 -0.25 

 Factor 2 -9.00 -11.08 -25.53 -26.67 0.00 0.00 

0.3 Factor 1 -11.67 -11.88 -16.67 -17.92 -0.28 -0.29 

 Factor 2 -13.89 -12.86 -19.87 -17.05 0.00 0.00 

Table 7 Percentage relative  reduction (%) in terms of RMSE for simple and weighted averages of 

variables associated to each of the factors of MEBLUP over EBLUP, ( 𝛥𝑘) two-factors CFA model.  

 

Table 6   shows that factor scores produce composite estimates with lower variability than simple 

and weighted averages for the two-factors case similar to the findings for the one-factor case. In 

Table 7, the MEBLUP provides estimates with lower variability than EBLUP for simple and 

weighted averages of those variables associated to each of the two factors in the two-factor  CFA 

model. The percentage relative reduction is larger in the case of opposite signs in 𝑟𝑒 and  𝑟𝑢. We also 

see no gains in efficiency when correlations are small.  

 

4.4. Final remarks on simulation study 

In this simulation study we investigated the use of CFA models in data dimensionality reduction and 

the application of multivariate SAE for small area indicators. It can be seen that, in line with the 
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general multivariate SAE literature, the use of multivariate mixed effects models provides estimates 

with lower variability than the univariate BHF model when variables are highly correlated with high 

intra-cluster correlations. In particular, the percentage of MSE reduction becomes larger when 𝑟𝑒 

and 𝑟𝑢 have opposite signs. The use of factor score means provide more efficient estimates than the 

use of the simple and weighted averages of standardised EBLUPs and MEBLUPs of original 

variables for multidimensional phenomena. Interestingly, we can see that if the correlations in the 

original data are low, we see little or no gain in using an MEBLUP approach compared to the 

univariate EBLUP. The CFA model produces factor scores to represent latent variables which 

changes the correlation structures compared to the original variables. In particular, if the intra-

cluster correlation reduces as a result of the CFA model, we see little gain in using the MEBLUP 

compared to the EBLUP. On the other hand, when correlations in the original data are high, and the 

correlation structure between factor scores remains high with an increased intra-cluster correlation, 

this leads to larger gains in the MEBLUP approach. However, in both cases we see that the 

MEBLUP approach has less reduction of RSMEs over the univariate EBLUP on factor score means 

estimation compared to a much larger reduction of RSMEs when comparing  simple and weighted 

averages of small area estimates on the original variables. Thus it appears that when accounting for 

the correlation structure in the original data a priori through the use of CFA  models, we can use a 

simpler univariate EBLUP approach on each of the factor scores means since there are little gains in 

using the MEBLUP approach.  

5. Application  

In this section we present an application using real data on housing quality in Italy, focusing on one 

of the key dimensions in the multidimensional Italian “Economic Wellbeing” of the BES 

framework. Housing quality is also an important determinant of wellbeing in other Organisation for 

Economic Co-operation and Development (OECD) countries (Andrews et al. 2011). Data from EU-

SILC 2009 and the Italian Census 2001 (for the auxiliary variables) are used. Although the 2009 

EU-SILC data were collected in 2008 (seven years after the census), the years 2001–2007 were a 
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period of relatively slow growth and low inflation in Italy (Giusti et al., 2012b). Future work will 

take into account more recent data for comparisons. 

5.1. Data and variables 

We focus on the following sub-dimensions of housing quality (Eurostat, 2016): housing deprivation 

and problems related to the residential area. Due to data availability, a limited number of variables 

are selected: severe material deprivation, smog, noise, crime, housing ownership, presence of 

humidity, darkness inside the house, absence of rubbish in the street, and absence of damages in 

public buildings. Income is another factor related to wellbeing, although monetary measurement is 

not always exhaustive for measuring poverty and wellbeing phenomena (Stiglitz et al., 2008). 

However, income has an interesting effect on housing quality. As Fusco (2015) notes, income and 

housing deprivation are negatively associated and, in the long run, this relationship becomes 

stronger. Therefore, it is reasonable to consider income in the analysis of multidimensional housing 

quality. In our work we use equivalised disposable income denoted by 𝐼𝐷𝐸, which is calculated as 

follows (Atkinson et al., 2002): 

𝐼𝑖
𝐷𝐸 =

𝐼𝑖
𝐷

𝑛𝑖
𝐸 , 𝑖 = 1, … , 𝑁,  

  (16) 

 

where 𝑖 = 1, … , 𝑁 denotes households, 𝐼𝑖
𝐷 is the disposable household income, and 𝑛𝑖

𝐸 is the 

equivalised household size calculated in the following way: 

𝑛𝑖
𝐸 = 1 + 0.5 ∙ (𝐻𝑀14+ − 1) + 0.3 ∙ 𝐻𝑀13−, (17) 

where 𝐻𝑀14+ is the number of household members aged 14 and over at the end of the income 

reference period, and 𝐻𝑀13− is the number of household members aged 13 or younger at the end of 

the income reference period.    

The explanatory variables used in the model (following model-fit diagnostics not shown here) relate 

to the head of the household and are common to both EU-SILC and Census data. They are gender, 

age, year of education, household size, size of the flat (in squared metres), and status of 

employment. Appendix B shows descriptive statistics of the observed variables and auxiliary 
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variables used in the application. 

The EU-SILC is conducted yearly by ISTAT for Italy, and coordinated by EUROSTAT at the EU 

level. For the Italian geography, the survey is designed to produce accurate estimates only at the 

national and regional levels (NUTS-2) and provinces, whereas municipalities (NUTS-3 and LAU-2 

levels), and lower geographical levels are unplanned domains (Giusti et al., 2012a). The regional 

samples are based on a stratified two-stage sample design as follows: the Primary Sampling Units 

(PSUs) are the municipalities within the provinces and households are the Secondary Sampling 

Units (SSUs). The PSUs are stratified according to their population size. The SSUs are then selected 

by systematic sampling in each PSU. We use the EU-SILC 2009 dataset for Tuscany. The 14th 

Population and Housing Census 2001 surveyed 1,388,252 households of persons living in Tuscany 

permanently or temporarily, including the homeless population and persons without a dwelling.  

 

5.2. Factor analysis and composite estimates 

First, we show results of the unrestricted factor analysis model, also known as Explanatory Factor 

Analysis (EFA), on the observed variables to investigate their contribution to the total variability 

(Kaplan, 2009). Table 8 shows the factor structure of the first two factors and how the variables 

relate to the factors via the factor loadings. According to the factors’ structure , the following two 

latent variables can be defined: residential area deprivation (factor 1) and housing material 

deprivation (factor 2) as shown in Figure 2. Figure  shows the scree plot of the EFA eigenvalues 

where it can be seen that indeed the first two factors explain a good amount of the total variability.  

Therefore, we keep two factors and carry out the   Confirmatory Factor Analysis (CFA) model 

estimation stage.  The factor scores are estimated from the CFA model using Mplus 7.4. For 

technical issues on the estimators we refer to Muthén (2004). 

Variable Factor 1 Factor 2 

Severe material deprivation 0.010 0.733 

Smog 0.757 0.025 

Noise 0.617 0.154 

Crime 0.659 0.130 
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Housing ownership 0.096 -0.589 

Presence of humidity 0.010 0.596 

Darkness inside the house -0.002 0.551 

Absence of rubbish in the street -0.843 0.084 

Absence of damages in public buildings -0.810 0.012 

Log equivalised disposable income 0.139 -0.398 

Table 8 Factor structure for two latent factors using EFA. 

 

 

Figure 2 Housing quality sub-dimensions 
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Figure 3 Scree plot EFA. 

The goodness of fit statistics, root mean square error of approximation (RMSEA), the comparative 

fit index (CFI), and Tucker-Lewis index (TLI) show good results according to Hu and Bentler 

(1999): RMSEA=0.040, CFI=0.925, and TLI=0.901. The estimated correlation coefficient between 

factor 1 and factor 2 is 0.4. Figure 2 shows the distributions of the factor scores for each of the 

latent variables arising from the CFA model following the use of the Box-Cox transformation with a 

parameter 𝛿 (Box and Cox, 1964) in order to approximate the normal distribution assumption 

needed for the SAE models.  For Factor 1 we used 𝛿=3.2 and for Factor 2 we used 𝛿 = 3.0. 

 

 

Figure 2 Factor scores histograms from CFA two-factor model after transformations. 
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5.3. Small area estimates and model diagnostics 

Tuscany municipalities are defined as the EU-SILC small areas, with sample sizes ranging from 0 

to 135 households. We assume a hierarchical structure in the data with households (level 1) nested 

within municipalities (level 2). The total number of households in the sample is 1,448 and 59 out of 

287 municipalities were sampled. We build two different types of SAE models: first, we apply the 

univariate BHF approach and consider the factor scores as two separate dependent variables to 

obtain estimates of the univariate EBLUPs of the single factor means. Also, the multivariate 

approach is applied and   the vector of the factor score means is predicted by MEBLUP. The MSEs 

of the EBLUPs of factor score means are estimated as in Moretti et al. (2018b). The MSEs of the 

MEBLUPs are estimated as in Moretti et al. (2018a), taking into account the variability arising from 

the CFA model as proposed in Moretti et al. (2018b). 

In the case of areas where 𝑛𝑑 = 0 it holds that:  

 

𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 = 𝑓̅̂

𝑑𝑚
𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐

= �̅�𝑑
′ �̂�, 𝑚 = 1,2

�̂̅�𝑑
𝑀𝐸𝐵𝐿𝑈𝑃 = �̂̅�𝑑

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
= �̅�𝑑

′ �̂�
. 

(18) 

where 𝑓̅̂
𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 and �̂̅�𝑑𝑚

𝑀𝐸𝐵𝐿𝑈𝑃 denote the EBLUP of the mean of the factor scores for the mth factor 

and the MEBLUP of the mean vector of factor scores, respectively.  

 

The final EBLUP and MEBLUP factor score means are then transformed for enabling interpretation 

and mapping using the ‘Min-Max’ criterion (OECD, 2008), which transforms the estimates to the 

interval [0,1]. For example, for the EBLUP of the m=1,2 factors, the factor scores mean is 

transformed to a value given by: 

�̂̅�𝑑𝑚
𝐸𝐵𝐿𝑈𝑃∗ =

�̂̅�𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 − min (�̂̅�𝑑𝑚

𝐸𝐵𝐿𝑈𝑃)

max (�̂̅�𝑑𝑚
𝐸𝐵𝐿𝑈𝑃) − min (�̂̅�𝑑𝑚

𝐸𝐵𝐿𝑈𝑃)
, 𝑓̅̂

𝑑𝑚
𝐸𝐵𝐿𝑈𝑃∗ ∈ [0,1]. 

(19) 

where �̂̅�𝑑𝑚
𝐸𝐵𝐿𝑈𝑃 denotes the EBLUP of factor score means for the mth factor for small area d, the 

minimum and maximum are across all EBLUPs in areas d=1,…,D.  



 

 24 

We proceed with the MEBLUP of factor score means and interpret our findings. Table 9 shows the 

percentiles for the transformed latent housing quality indicators based on MEBLUP of factor score 

means. Figure 3 shows the maps of residential area deprivation and housing material deprivation, 

respectively. 

 MEBLUP Percentile 

 0% 25% 50% 75% 100% 

Residential area deprivation 0.000 0.261 0.266 0.270 1.000 

Housing material deprivation 0.000 0.418 0.457 0.502 1.000 

Table 9 Percentiles for transformed latent housing quality indicators based on MEBLUP of factor 

score means. 

 

 

Figure 3 Housing quality indicators based on transformed MEBLUP factor score means {1=1st 

quartile; 2=2nd quartile; 3=3rd quartile; 4=4th quartile}. 

 

Although the residential area deprivation dimension is positively correlated with the housing 

material deprivation dimension, there are important differences at the area level between the two 

sub-dimensions. These differences can be seen in the maps. Looking at residential area deprivation 

estimates (Figure 3; left panel) it can be seen that the municipalities located in Massa e Carrara and 

Siena provinces have the lowest values of the residential area deprivation indicators. Low levels of 
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residential area deprivation are estimated for some municipalities of the south Grosseto province 

(Manciano and Magliano in Toscana). The highest values in residential area deprivation areas are 

estimated for municipalities located in the north of the Florence province and north Livorno 

province. The second map in Figure 3 (right panel) depicts the housing material deprivation 

indicator. Interestingly, although the correlation between the two indicators is 0.4, there are 

noteworthy differences in some areas: Massa e Carrara, north Siena, Florence, Grosseto and south 

Siena provinces. For the municipalities located in these provinces the estimates of the housing 

material deprivation indicator belong to the 4th quantile, denoting high levels of housing material 

deprivation and belong to the 1st and 2nd quantiles denoting low levels of residential area 

deprivation. 

A multilevel analysis (using SAE in this case) shows that one housing dimension can be low and the 

other housing dimension can be high for some areas. This gives important guidelines for informing 

policies.   

 

Figure 4 Root Mean Squared Error (RMSE) of MEBLUP (__) and direct estimates (---) of 

residential area deprivation small areas with 𝑛𝑑 > 0. 
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Figure 5 Root Mean Squared Error (RMSE) of MEBLUP (__) and direct estimates (---) of housing 

material deprivation small areas with 𝑛𝑑 > 0. 

Figure 4 and Figure 5 show the Root Mean Squared Error (RMSE) of MEBLUP and direct 

estimates calculated via the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) for those 

small areas with  𝑛𝑑 > 0 for residential area deprivation and housing material deprivation, 

respectively. Figure 6 and Figure 7 show the RMSEs of residential area deprivation and housing 

material deprivation comparing the EBLUP and MEBLUP estimates for those small areas with 

𝑛𝑑 > 0, respectively.  
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Figure 6 Root Mean Squared Error (RMSE) of MEBLUP (__) and EBLUP (---) of residential area 

deprivation small areas with 𝑛𝑑 > 0. 

 

Figure 7 Root Mean Squared Error (RMSE) of MEBLUP (__) and EBLUP (---) of housing material 

deprivation small areas with 𝑛𝑑 > 0. 

It can be seen from the figures that the MEBLUP approach provides smaller RMSE over the 

univariate EBLUP approach. The percentage reduction in terms of RMSE across all areas is 6.41% 

and 7.90% for residential area deprivation and housing material deprivation, respectively. 

The model estimates of the variance components and correlations of the latent factors are:  
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�̂�𝑒,𝑓2

2 = 0.170, 𝜎𝑢,𝑓2

2 = 0.017,  

�̂�𝑒 [
0.086 0.012
0.012 0.169

] 𝑤𝑖𝑡ℎ �̂�𝑒 = 0.10, 

�̂�𝑢 [
0.023 0.015
0.015 0.016

] 𝑤𝑖𝑡ℎ �̂�𝑢 = 0.78. 

The estimated ICCs are 0.21 and 0.09 for factor 1 and factor 2, respectively. 

Figure 8 and Figure 9 show the Q-Q plots of the residuals (level-1 and level-2) from the BHF and 

multivariate models, respectively, for both of the factors. It can be seen that the residuals are 

approximately normally distributed and, in the case of the multivariate mixed effects model, they 

behave slightly better. 

 

Figure 8 Q-Q plots of the residuals estimated from the univariate BHF model. 
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Figure 9 Q-Q plots of the residuals estimated from the multivariate model. 

 

6. Discussion 

In this paper we evaluated the use of a multivariate empirical best linear unbiased predictor  

(MEBLUP) for data dimensionality reduction. In particular, we compared the use of factor score 

means with the use of simple and weighted averages of standardised EBLUPs and MEBLUPs of 

original variables in a large-scale simulation study. 

The reduction in terms of MSE of the multivariate analysis over the univariate analysis depends on 

the correlation coefficients (𝑟𝑒 and 𝑟𝑢) associated to the variance-covariance matrices and intra-class 

correlation of the original variables and in particular how these change when accounting for the 

correlations a priori through Factor Analysis models. 

Our work contributes to the data dimensionality issue in small area estimation. To summarise, we 

can state that when factor score means on several latent variables are used in data dimensionality 

reduction, these may be calculated using univariate EBLUPs, since the correlation structure is 

accounted for a priori via the factor analysis model. This is shown in the simulation study under 

comparison (c), where percentages of reduction in terms of RMSE for the factor scores case are 

small compared to the weighted and simple averages of the original variables.  

We note that factor scores are still crucial in data dimensionality reduction where different types of 
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variables may arise (binary, continuous, categorical etc.). In fact, in the real data application, we 

have variables measured on different scales, hence, multivariate EBLUP would require joint 

multivariate mixed effects models, which have not been studied in SAE so far and is a topic for 

future work. Factor scores estimated by a FA analysis model overcome this issue and allow the 

study of multidimensional well-being phenomena.  Another area of future work is the study of MSE 

estimation in multivariate SAE models.  
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Appendix A: Goodness of Fit for CFA Models on Generated Population for Simulation Study 

 

  One-factor model Two-factor model 

Correlation structure 𝐼𝐶𝐶𝑘 SRMR CFI TLI SRMR CFI TLI 

𝒓𝒆 = 𝟎. 𝟐, 𝒓𝒖 = 𝟎. 𝟐  0.05 0.016 0.985 0.956 0.026 0.985 0.956 

 0.1 0.016 0.986 0.957 0.016 0.986 0.957 

 0.3 0.016 0.991 0.972 0.016 0.991 0.972 

𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = 𝟎. 𝟐  0.05 0.040 0.969 0.908 0.035 0.989 0.978 

 0.1 0.038 0.971 0.912 0.032 0.975 0.925 

 0.3 0.028 0.985 0.955 0.020 0.985 0.955 

𝒓𝒆 = 𝟎. 𝟕, 𝒓𝒖 = −𝟎. 𝟐  0.05 0.040 0.970 0.909 0.038 0.978 0.978 

 0.1 0.032 0.975 0.924 0.029 0.968 0.927 

 0.3 0.020 0.985 0.955 0.024 0.987 0.978 

 

Table A1 Confirmatory factor analysis goodness of fit statistics, one-factor and two-factor model, 

on the generated population 
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Appendix B: Description of variables on EU-SILC 2009 Tuscany dataset for Application in 

Section 5 

 

Variable Mean S.D. 

Severe material deprivation 4% 0.0384 

Smog 17% 0.373 

Noise 23% 0.424 

Crime 13% 0.341 

Housing ownership 74% 0.439 

Presence of humidity 15% 0.358 

Darkness inside the house 8% 0.277 

Equivalised disposable income 20,090 13,990.88 

Rooms per household component 1.989 1.239 

Table B1 Descriptive statistics of the observed variables (EU-SILC, Tuscany 2009). 

 

Access to public services 

  Absolute frequency Relative frequency % 

Very difficult 133 9.19 
Some difficulties 249 17.20 
Easy 631 43.58 
Very easy 290 20.03 
Not needed 145 10.01 

Total 1448 100.00 

Table B2 Frequency distribution of access to public services (EU-SILC, Tuscany 2009) 

 

Perception of damages to public buildings 

  Absolute frequency Relative frequency % 

Always 65 4.49 
Often 83 5.73 
Sometime 294 20.30 
Never 1006 69.48 
Total 1448 100.00 

Table B3 Frequency distribution of damages to public buildings (EU-SILC, Tuscany 2009) 
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Variable Mean S.D. 

Household size 2.43 1.18 

Gender (female) 70% 0.46 

Status of employment (employed) 50% 0.50 

Age 57.39 16.86 

Years of education 9.76 4.56 

Flat  (or house) size in squared metres 97.54 38.43 

Table B5 Descriptive statistics of the auxiliary variables (EU-SILC, Tuscany 2009). 

 

 

  

Perception of rubbish in the street 

  Absolute frequency Relative frequency % 

Always 75 5.18 
Often 82 5.66 
Sometime 308 21.27 
Never 983 67.89 
Total 1448 100.00 

Table B4 Frequency distribution of perception of rubbish in the street 

(EU-SILC, Tuscany 2009) 
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Appendix C: Specification of the R functions used 

Here we describe the main R packages that can be to replicate the analysis.  

 

C.1 Estimation of small area means and MSE under univariate EBLUP approach. Although we 

programmed our functions manually, the sae package (Molina and Marhuenda, 2015) may be used: 

 Required packages: nlme, MASS 

 Functions: eblupBHF( ) and pbmseBHF( ), 

nlme and MASS are still required.  

C.2 Running Mplus models in the R environment via MplusAutomation (Muthén and Muthén, 

2012;  Hallquist and Wiley, 2014) 

 Functions: mplusObject( ), mplusModeler( ). 

Mplus is required. 

C.3 Mapping using spdep, maptools, sp, Hmisc 

 Functions: readShapePoly( ), spplot( ) 

C.4 Multivariate mixed effect model ML fitting via mlmmm (Yucel, 2010) 

 Function: mlmmm.em() 

All the other analysis can be programmed easily.  
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