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Abstract. One of the most common forms of data release by National 

Statistical Institutes  (NSIs) are frequency tables arising from censuses 

and surveys and these have been the focus of statistical disclosure 

limitation (SDL) techniques for decades. With the need to modernize 

dissemination strategies, NSIs are considering web-based flexible table 

builders where users can generate their own tables of interest without 

the need for human intervention. This has caused a shift in the types of 

disclosure risks of concern under the SDL approaches and a move 

towards perturbative methods with more formal privacy guarantees 

for confidentiality protection. We examine three post-tabular 

confidentiality protection methods to be used in a flexible table builder 

for generating survey weighted frequency tables: the computer science 

approach of differential privacy and two SDL approaches of post-

randomization and   a new technique called drop/add-up-to-q. We 

demonstrate and compare their application in a simulation study. 

Keywords: Flexible Table Builder, Perturbation, Differential 

Privacy, Post-randomization    
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1   Introduction 

National Statistical Institutes (NSIs) have been releasing tabular data 

arising from censuses and surveys for decades. Traditionally, the 

disclosure risks of concern were identity disclosure arising from small 

cell counts in the tables and attribute disclosure where a row/column 

may have many zeros and only one non-zero cell count. This latter 

disclosure risk means that an intruder can learn something new about 

an individual or a group of individuals on a particular spanning 

variable based on an identification from the other variables defining 

the table. For tabular data, most of the statistical disclosure limitation 

(SDL) research has been based on census (whole-population) frequency 

tables. This is because tables generated from survey microdata have an 

additional layer of protection due to the random sampling under the 

assumption that the intruder does not know who is in the sample. In 

particular, sampling  leads to uncertainty about whether zeroes that 

appear in the tables are structural or random and this reduces the risk 

of attribute disclosure.  

 

With increasing demand for more open data and multiple releases of 

data products from a given dataset, this has led to growing concerns 

about disclosure risks that cannot be easily managed. In particular, 

NSIs are increasingly worried about inferential disclosure where an 

intruder can learn new information about individuals or a group of 

individuals to a very high degree. For example, with multiple releases 

of data products from a single dataset, such as tabular data from 

restricted files and the release of a public-use file, intruders can 

manipulate and link information to reveal sensitive information. In 

terms of frequency tables, users can difference tables that individually 

may have no apparent disclosure risks but the differenced table may 

have high disclosure risks due to small and zero cell counts.  

Inferential disclosure subsumes all other disclosure risks and is 

becoming more prevalent. Therefore, NSIs have been making more use 

of controlled release and licensing data to registered users in order to 

protect the confidentiality of data subjects leading to a shift  from the 

SDL principle  of  ‘safe data’ to ‘safe access’. However, restricting data 



3 

 

is in direct contrast to government initiatives for more open and 

accessible data.  

 

With the call for NSIs to release data and modernize their 

dissemination strategies, we focus in this paper on a web-based flexible 

table builder. Users can generate tables of interest through a user-

friendly interface and define a table of interest from a set of pre-

defined variables/categories using drop down lists. They can then 

download the table directly to their own personal computer without 

the need for human intervention in the process. The Australian Bureau 

of Statistics (ABS), Eurostat and the US Census Bureau have 

implemented table builders for their census dissemination although 

they differ in how they are set up with respect to whether pre- and/or 

post-tabular SDL methods are used. For example, there are general 

‘rules of thumb’ applied in a flexible table builder with respect to 

minimum cell values  (eg. application of k-anonymity and associated l-

diversity and t-closeness rules), minimum population thresholds, the 

number of dimensions in a table, etc. Shlomo, et al. (2015) recognize the 

potential for inferential disclosure in flexible table builders and 

established that perturbative disclosure limitation methods would be 

needed to protect the confidentiality of data subjects. They also found 

that a post-tabular protection procedure applied directly on the 

generated table, as opposed to a pre-tabular protection of the 

underlying microdata prior to generating the table, improves the 

utility of the data.  

 

The research on table builders have led to increasing exploration of 

whether the privacy-by-design of differential privacy (DP) established 

in the computer science literature as an output perturbation algorithm  

can address the confidentiality protection of a flexible table builder 

(see: Dwork, et al. 2006, Dwork and Roth, 2014 and references therein). 

Rinott, et al. (2018) have addressed the implementation of DP on a 

table builder for census counts from both a theoretical and applied 

perspective according and therefore we follow this approach. Other 

examples in the computer science literature are Barak, et al. (2007), 

Yaroslavtsev, et al. (2013) and Qardaji, et al. (2014).     



In this paper, we focus again on a flexible table builder from an NSI 

perspective but   as opposed to Rinott, et al. (2018) we aim to use 

survey data as the underlying microdata. The generated tables contain 

weighted survey frequency counts and not census counts. In other 

words, instead of counting the number of individuals for a given cell 

defined from spanning variables of a table, we aggregate the survey 

weights of the individuals. Recall that survey weights are calculated by 

modifying the design weights (inverse of the inclusion probabilities) to 

account for non-response and calibration to known population totals.  

As mentioned, there is an extra layer of protection when using survey 

data as the underlying microdata in a table builder instead of census 

data since the number of individuals in each of the cells of the table is 

random. Survey weights vary across data subjects and hence for a 

weighted survey count, there is uncertainty on the value of the original 

survey count. However, tabular data based on surveys are often more 

problematic than census tables because they are usually accompanied 

by freely available public-use microdata which are modified versions 

of the original restricted microdata with some variables dropped and 

others  grouped. It has been shown that public-use files can be used to 

attack tables that are generated from the original restricted microdata. 

Therefore, in these situations where both public-use microdata and 

tables generated from restricted data are disseminated, we will need to 

use perturbative SDL methods on the generated tables to protect the 

confidentiality of data subjects.  

 

In this paper, we compare three confidentiality protection methods for 

an online flexible table builder to generate tables containing weighted 

survey counts:  

 The computer science approach of differential privacy (DP).     

 An SDL approach based on post-randomization (PRAM) which has 

been adapted to the case of perturbing tabular cell counts described 

in Shlomo and Young (2008). 

 An SDL approach developed at Westat called drop/add-up-to-q  (Q) 

and described in Li and Krenzke (2016). 

Section 2 describes the three confidentiality protection methods and 

Section 3 a simulation study comparing the methods for a flexible table 
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builder of survey weighted cell counts. Section 4 concludes with a 

discussion.   

2   Confidentiality Protection Approaches 

There are similarities between the three confidentiality protection 

methods as all are based on output perturbation and carried out after 

the table has been generated. All are based on a probability mechanism 

M which is applied to a list A of all possible cell counts in all allowed 

tables that can be distributed in a flexible table builder. Note that the 

list A can include internal cell counts and marginal cell counts.  As an 

example, for a microdata set with 10 variables and allowing for all 3-

way tables, the list  A of cell counts  are all those in the 3-way tables 

(120 possible tables), the 2-way tables (45 possible tables), 1-way tables 

(10 possible tables) and the overall total (which is considered to be 

known). So there are 175 possible tables (besides the overall total) that 

can be requested from a flexible table builder.  

 

Define a table as a collection of cells arranged in a list a = (a1, … , aL) 

∈ A  that can be disseminated in a table builder. Applying the 

probability mechanism M, M(a), we generate a set of new cell counts in 

the table b = (b1, … , bL)  where b∈ B  is the set of all possible outputs 

that can be obtained from mechanism M. We assume that cell counts 

are discrete and that b has the same structure as  a.  

 

Fraser and Wooton (2005) propose the use of microdata keys to 

preserve the consistency of perturbation across same cells that may be 

generated in a table builder.  Each individual in the microdata 

underlying the table builder is assigned a random number, denoted as 

a ‘key’.  Any collection of a group of individuals formulating a single 

cell will also consistently have the same seed by aggregating the 

microdata keys. Although the perturbations are pre-determined in 

advance due to the consistency property, the actual perturbation is 

carried out at the stage that the table is generated. This is referred to as 

a non-interactive mechanism in the computer science literature and 



hence privacy budgets are set in advance and any request for the same 

table will not deplete the privacy budget. This contrasts with the case 

of an interactive mechanism such as a dynamic online query system in 

the computer science literature. 

 
 

2.1 Differential Privacy 
We first define differential privacy (DP) (Dwork et al, 2006). A 

mechanism M satisfies ε-differential privacy if for all neighboring lists 

a, a’ ∈ A differing by one individual and all possible outputs b∈ B  we 

have: 

 P(M(a) = b)/P(M(a′) = b) ≤ eε.                                                              (1) 

This means that little can be learnt (up to a degree of eε ) by an intruder 

about the target individual that was dropped when moving from a to 

a’. In other words, the ratio is bounded and the probability in the 

denominator cannot be zero. Rinott et al. 2018 propose  using an 

exponential mechanism (McSherry, et al. 2007) based on a utility 

function: u(a, b) described as follows:  

Given a∈ A choose b∈ B with probability proportional to 

              e
ε

2
u(a,b)/∆u                                                                                          (2) 

where ε is the privacy budget and the scale is defined as: ∆u =

maxb∈B maxa,a′∈A |u(a, b) − u(a′, b)| where a and a’ are neighboring 

databases that differ by removing one individual.  

 

Note that when we are dealing with internal cell counts of a table, the 

maximum difference ∆u  is one as an individual can only appear once. 

Rinott et al. (2018) proves that this perturbation mechanism M is ε-

differentially private.  

 

DP has the advantage that it provides a priori privacy guarantees 

under a ‘worst-case’ scenario where the intruder knows everything 

about the population except for one target individual. This definition 

subsumes all of the disclosure risks in SDL including inferential 

disclosure which in the case of a flexible table builder are caused by the 

ability to difference tables.   
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On the other hand, NSIs are concerned about utility and one way to 

ensure high utility is to put a cap on the amount of perturbation to the 

original cell count.  For example, perturbations can be capped up to 

±7. Note that for small survey cell counts, this may result in perturbed 

cell counts that are negative but these can be converted back to zeros 

without reducing the privacy guarantees. Therefore, there is a 

‘slippage’ in the DP definition beyond the limits of the cap with an 

unbounded ratio in (1). If however the probability of perturbing an 

original cell count beyond the cap is very small, for example less than 

1/N where N is the size of the population, then this slippage leads to 

the notion of (ε, δ) - differential privacy where δ  is the probability of 

failing to perturb beyond the cap. Therefore, there is a tradeoff 

between the two parameters ε and δ and we can carry out a risk-utility 

analysis.   

 

Up till now, the focus of table builders has been on whole-population 

counts. DP does not distinguish between censuses or surveys and the 

intruder is assumed to know everything about the whole population 

except for one target individual. For survey microdata where only 

weighted cell counts are published, removing an individual from a in a 

neighboring database a’ means that their associated survey weight is 

removed. 

 

There are two ways of dealing with  frequency tables of weighted 

survey counts:  

 Perturbation carried out on sample cell counts and then the 

perturbed sample cell counts are used to adjust  the weighted 

survey counts;  

 Perturbation carried out directly on weighted survey counts.  

 

Rinott et al. (2018) suggest that for survey microdata ∆u should be the 

maximum survey weight and we should carry out the perturbation 

directly on the weighted survey cell counts. However, a large ∆u leads 

to lower utility as the perturbation mechanism M takes on uniform 

probabilities meaning that all perturbations would be equally likely 

and thus leading to larger perturbations. In this paper, we propose 



defining ∆u  as the average survey weight. This means that in the 

exponential mechanism defined in (2) the survey weights cancel out 

from the numerator and denominator and hence we carry out the 

perturbations directly on the sample counts followed by a post-

perturbation adjustment to obtain the perturbed weighted survey 

counts.   For example, if the perturbation led to ‘add +3 to the original 

cell count’, we add 3 times the average survey weight to the original 

weighted cell count. This proposal is possible when there is little 

variability in the survey weights.  Note that the overall average survey 

weight would be known since both the sample size and the population 

size is assumed known and hence the post-perturbation adjustment 

does not negate the principles of DP.  

 

Another complexity of DP is the marginal totals of a table. Marginal 

totals can be obtained by aggregating internal cells. If however we 

perturb the marginal totals as well as the internal cell counts then an 

individual can appear multiple times in the table and ∆u would 

increase. For example, in a 3-way table where all 2 -way tables and 1 -

way tables are also perturbed than an individual can appear 23-1 times 

and therefore ∆u =7. This leads to higher levels of perturbation. Note 

that in this case, we can ensure the additivity of the table by iterative 

proportional fitting (IPF) and a linear program to control round the 

tables so that perturbed internal cell counts aggregate to perturbed 

marginal cell counts and this procedure will not negate the property of 

DP. For ease of comparing the confidentiality approaches, we focus 

only on internal cell counts where an individual appears once in list A 

and assume that marginal totals of a table are obtained by aggregating 

internal cells.  

 

Two further complexities of DP are:  (1) zero cells are to be perturbed 

(unless it is a structural zero in the table resulting from an impossible 

combination, such as children with an occupation of doctor); and, (2) 

redefining the microdata keys that inform the perturbation since 

clearly 2 databases a and a’ differing by only one individual and only 

one cell affected will inform the cell to which the individual belongs if 

tables are differenced. The microdata key will also have to also account 



9 

 

for domain total and therefore we need to assess the impact on the 

privacy budget in the non-interactive mechanism.   
 

  

2.2 Post-randomization Method 
The post-randomization method under SDL for frequency counts in 

census tables is defined in Shlomo and Young (2008) and a similar 

approach is used in the ABS Table Builder (Fraser and Wooton, 2005). 

It is similar to the DP approach in that there is a probability mechanism 

M that is applied to original cell counts a ∈ A to produce a set of 

perturbed cell counts b∈ B . The use of microdata keys ensures 

consistent perturbation for any single cell in a requested table having 

the same domain total.  

 

The probability mechanism is generally developed arbitrarily to ensure 

a fixed perturbation variance with caps on the range of perturbations 

and would also not allow negative perturbations, i.e. the small cell 

values in the table are treated differently than the large cell values in 

the table. Shlomo and Young (2008) place the property of invariance on 

the probability mechanism M so that the marginal totals are 

maintained in expectation. This means that the original probability 

mechanism M undergoes a transformation so that the vector of 

marginal counts t for a variable spanning the table with L categories 

have the property that tM=t. Note that this means that the transformed 

probability mechanism M depends on the data and hence would not be 

considered DP.  Generally, Iterative Proportional Fitting (IPF) is 

applied to ensure the additivity of the table where internal perturbed 

cell counts are adjusted to perturbed marginal totals. This may result in 

a deterioration of the consistency property based on microdata keys 

due to the adjustment and rounding. Note that same levels of 

perturbation are applied to internal cell counts and marginal cell 

counts and there is no distinction as in the case of DP.  

 

Similar to the discussion in Section 2.1, we can apply the perturbations 

on the sample cell counts and then adjust the weighted cell counts 

accordingly from the perturbed sample cell counts using the overall 

average survey weight. Additionally we can adjust the weighted cell 



counts as follows: First, the ratio is defined as the perturbed sample 

cell count divided by the original sample cell count. Then, this ratio is 

multiplied by the original value of the weighted cell count. In practice, 

this approach is adjusting the original survey weighted cell count by 

the average survey weight in the cell rather than the overall average 

survey weight. Therefore, this latter procedure would not be DP since 

the adjustment depends on the original data.  In addition, as this is an 

SDL approach, zeros are not perturbed.   
 

2.3 Drop/Add-up-to-q Approach 
Li and Krenzke (2016) describe an SDL approach that was developed at 

Westat. It starts with the perturbation of the sample cell counts as 

follows: First, q is defined as 1% of the cell value (rounded up to the 

nearest integer and capped, say at 7) to produce the perturbation 

vector {-q,-q+1,…-1, 0, 1,….q-1, q} so that the length of the perturbation 

vector varies according to the original cell count. Then the perturbation 

is carried out using a uniform distribution so that all perturbations are 

equally likely. In the simplest case, for q=1, the perturbation vector is 

 {-1,0,1} and each of these possible outcomes will have a 1/3 chance of 

selection.  

 

As in the post-randomization method described in Section 2.2, zeros 

are not perturbed. Also, since the perturbation depends on the original 

cell count, this approach would not be DP. We can adjust the weighted 

cell counts similarly to the post-randomization described in Section 2.2 

using the overall average survey weight or the average survey weight 

in the cell. An additional method of adjusting the survey weighted cell 

counts is described in Li and Krenzke (2016) and is based on utilizing 

the microdata underlying the table.    
 

 

3   Simulation Study 

In all confidentiality protection approaches, we generate a table and 

then perturb the sample cell counts in the first step. Following the 
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perturbation of the sample counts in the table, we then adjust the 

survey weights to produce weighted survey counts. For the DP 

approach we adjust the weighted counts by the overall average survey 

weight. For the other disclosure limitation approaches we adjust the 

weighted counts by both the overall average survey weight and the 

average survey weight in the cell. Given that the simulation study will 

not include generating microdata, we do not carry out the method for 

adjusting survey weights for the drop/add-up-to-q approach according 

to Li and Krenzke (2016).    

 

We next describe the probability mechanisms M for each of the 

confidentiality protection approaches described in Section 2.  
 

3.1 Differential Privacy 
We use the exponential mechanism defined in Section 2.1 on the 

sample counts with ε = 2, ∆u = 1  and a cap of ±7.  We use a utility 

function based on an l1 loss function: l1 = ∑ |ak − bk
K
k=1 |  and u = −l1. 

This results in the perturbation vector and associated probabilities 

shown in Table 1. We note that under a full risk-utility assessment we 

would vary ε and the caps, but for the purpose of comparing the three 

confidentiality protection approaches we will use these parameter 

settings. In addition, we have set a rather high ε = 2 since our focus is 

on survey microdata where we assume that response knowledge is not 

known by an intruder. 

 
Table 1: Differentially private perturbation mechanism probabilities 

for ε = 2, ∆u = 1  and a cap of ±7 
Perturbation Probability of Perturbation 

-7 0.000000633 

-6 0.000004679 

-5 0.000034576 

-4 0.000255486 

-3 0.001887804 

-2 0.013949 

-1 0.10307 

0 0.76159 

1 0.10307 

2 0.013949 

3 0.001887804 

4 0.000255486 



5 0.000034576 

6 0.000004679 

7 0.000000633 

 

The parameter δ is   determined by the probability at the cap  ±7 

which in this case is equal to 0.000000633. This value is very small and 

therefore is an acceptable slippage for DP. 
 

 

3.2 Post-Randomization  
For the post-randomization method, we use a similar perturbation 

vector to Table 1 but place it in the framework of an SDL approach. 

Here the small cell counts are perturbed separately to ensure that no 

negative values occur and in addition, the mechanism M is placed in a 

matrix formulation with truncations in order to carry out the 

transformation that ensures the property of invariance as described in 

Section 2.2. This means that we introduce bias into the perturbation. 

The small cell probability matrix is presented in Table 2.    
 
Table 2: Small cell probability mechanism for post-randomization of 

cell counts below 6 

Original 

values 

Perturbed values 

0 1 2 3 4 5 6 

0 1 0 0 0 0 0 0 

1 0.119203 0.761595 0.103075 0.013949 0.001888 0.000255 3.46E-05 

2 0.013949 0.105253 0.761596 0.10311 0.013949 0.001888 0.000255 

3 0.001888 0.013949 0.103365 0.761596 0.103365 0.013949 0.001888 

4 0.000255 0.001888 0.013949 0.10311 0.761596 0.105253 0.013949 

5 3.46E-05 0.000255 0.001888 0.013949 0.103075 0.761595 0.119203 

6 5.31E-06 3.46E-05 0.000255 0.001888 0.013949 0.222273 0.761595 

 

For large cell counts over the value of 7 we first calculate a residual 

value from base 15. For any cell count having the same residual value 

we use the same vector of probabilities in M to carry out the 

perturbation. Based on the random draw, the perturbed value will be 

selected according to the appropriate vector of probabilities in the 

probability mechanism M. This perturbed value is subtracted from the 

residual value to calculate the perturbation which is then added to the 
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original cell count. Table 3 presents the probability mechanism M for 

large cell counts in the post-randomization method.  

 
Table 3: Large cell probability mechanism for post-randomization of  cell 

counts over 7 

 
 

The probability mechanisms for small and large cell counts have the 

same value of ε = 2 as DP in Section 3.1 but the caps on the cell counts 

(and subsequently the values of δ) will vary depending on the original 

cell count. The probability mechanism M is not symmetric. For 

example, for an original cell count of 1 perturbed to 0, δ  is equal to 

0.119203 enforcing the rule that no negative count is allowed. This δ  is 

very large and hence it is likely that an intruder may gain information 

about a target individual. However, for the same original count of 1 

perturbed to a higher value of say, 8,  δ  is equal to 0.000034576.   
 

3.3 Drop/Add-up-to-q Approach 
For the drop/add-up-to-q approach, the probability mechanism M is 

uniform and depends on the value q which is 1% of the cell value 

(rounded up to the nearest integer)  and capped at ±7. For a uniform 

probability mechanism, this means that ε is very small and in this case 

would be equal to 0.01. Therefore, compared to the other approaches, 

this approach seemingly has stricter privacy guarantees. However, the  

slippage in the form of  δ can be large. For q=7, δ  is 0.067 and for q=1, 

δ  is very high and set at 0.333.  

 



3.4 Generating Tables      
The simulation study is carried out on two sets of tables, the first set 

having independent attributes and the second set having dependent 

attributes as follows:  

1. Generate a population table of size 7 by 7 using a Poisson 

distribution with μij = η + αi + βj + Kγij   where each of αi, βj and γij    

are drawn   by  Uniform(0.5,0.5)  and  η =6.5.  This produces 

population tables of approximately 44,000 individuals. 

2. The independent attribute tables are generated with K=0.02. This is 

to introduce slightly lower power to the Chi-square test for 

independence.  The dependent attribute tables are generated with 

K=0.2. 

3. Initial weights are defined by the rows of the table with three 

different sets of weights introduced into the tables generated by 

Uniform (20,40). 

4. The sample counts are calculated by rounding the value obtained by 

dividing the   population counts with the generated weights and 

then final weights are calculated by population counts divided by 

the rounded sample counts. This produces tables of sample counts 

of approximately 1,530 individuals for an average cell size of 31. 

5.  On each generated table, we carry out the three confidentiality 

protection methods on the sample counts (denoted ‘DP’ for 

differential privacy, ‘PRAM’ for the post-randomization method 

and ‘Q’ for the drop/add-up-to-q approach).   

6. The perturbed weighted cell counts are then obtained as described 

in Section 2.  We adjust the original weighted cell counts by the 

overall average weight (denoted, ‘Avg’) and the average weight in 

the cell (denoted ‘Avg cell’).   

7. Repeat 500 times. 

 

3.5 Risk-Utility Analysis  

We first present a disclosure risk assessment of the three 

confidentiality approaches in Table 4. We have previously equated the 

DP parameters to the SDL approaches of PRAM and Q, and these 

appear in the first row of Table 4 for the case where the original 

sample cell count is 1 which means that the δ parameter is s maximal 
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value. We also include two other disclosure risk measures that are 

defined in the SDL literature. The first is the average percentage of 

cells perturbed in the tables across the 500 generated independent or 

dependent tables.  The second is a risk measure developed in Antal, et 

al. (2014) based on Information Theory. It is defined as the average 

across the 500 generated independent or dependent tables of the 

following risk measure:  RM = 1 −
H(a|b)

H(a)
 where for a given table with K 

internal cells:  a = (a1, a2, … , aK), the entropy is defined as  H(a) =

− ∑
 ak

N
log

 ak

Nk   and ∑ ak = N k and the conditional entropy of table a and 

the perturbed table  b,  H(a|b),  is calculated according to formula (4) in 

Antal, et al. (2014) as follows (with log (0) defined as 0): 
H(a|b) =

− ∑
min(ak,bk)

Nk log (
min(ak,bk)

bk
) − ∑

ak−min(ak,bk)

Nk log (
ak−min(ak,bk)

N−∑ min(ak,bk)k
) −

 ∑
bk−min(ak,bk)

Nk log (
bk−min(ak,bk)

bk
)  

 

Note that if  ∑ bk = M  k  and M ≠ N then we need to adjust the cell 

counts to have equal totals by multiplying vector a by M and vector b 

by N.   The conditional entropy represents the uncertainty in the 

original table given we have observed the perturbed table.  Therefore, 

the higher the risk measure, the more we may infer information from 

the original table given the perturbed table.   In Table 4, we show 

results according to the weight adjustment based on the overall 

average survey weight. Results were similar for the case of the weight 

adjustment according to the average survey weight in the cell.      

 
Table 4: Risk Measures for weighted sample counts according to 

confidentiality protection methods (averaged over 500 replications) 
Risk Measures  DP PRAM Q 

DP parameters 

when original 

count=1 

𝜀 

𝛿 

 2   

0.00000063 

 2 

 0.1192 

 0.01 

0.333  

Percent Cells 

Perturbed 

Independent  

Dependent 
    23.8 

24.5 

27.7 

27.7 

67.1 

66.8 
1-Proportion of 

conditional    

entropy (RM) 

Independent 

Dependent 
0.9891 

0.9892 

 

0.9870 

0.9870 

 

0.9849 

0.9751 

 



From Table 4, the small ε in the SDL approach of drop/add-up-to-q  

(Q) is indicative of the  fact that a higher percentage of cells are 

perturbed compared to  the other approaches and the risk measure RM 

is lower reflecting that there is more uncertainty introduced into the 

tables as a result of the perturbation.  However, the Q approach has a 

very large  δ for the case of an original cell value of 1 which means a 

high probability of an unbounded likelihood ratio in (1). Whilst we 

fixed the post-randomization method (PRAM) to be similar to 

differential privacy (DP) with ε = 2, the fact that the perturbation 

mechanism is not symmetric caused slightly higher levels of 

perturbation and more protection but again we see that PRAM has  a 

large δ for the case of an original cell value of 1. Under the SDL risk 

measures, there is little difference on whether the tables had 

independent or dependent attributes. 

 

In Table 5, we compare the confidentiality protection approaches with 

respect to a range of utility measures:  the average of the total sample 

count, total weighted sample count and the percent relative absolute 

difference from the true counts over the 500 generated dependent and 

independent tables. In addition, we calculate the Hellinger’s Distance 

metric on each  of the tables:  HD(a, b)=√
1

2
∑ (√ak − √bk)2

k   where ak   is 

the original cell value and bkis the perturbed cell value, and present 

the average of the Hellinger’s Distance over the 500 generated 

dependent or  independent tables. 
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 Table 5:  Overall sample and weighted sample counts and Hellinger’s 

distance according to confidentiality protection methods (averaged over 500 

replications) 

Confidentiality 

Protection 

Methods Mean value Standard Error 

Percent 

Relative 

Absolute 

Difference  

Average 

Hellinger’s 

Distance 

Dependent Sample Counts  

Original  1531.1 21.7 - - 

DP  1531.3 21.7 0.245 0.352 

PRAM  1531.1 21.6 0.276 0.404  

Q  1531.5 21.6 0.346 0.491  

Dependent Weighted Counts  

Original 44164.7 573.0 - - 

DP Avg 44168.8 573.2 0.253 1.931 

PRAM Avg 44164.6 572.8 0.285 2.224  

PRAM Avg cell 44163.7 572.8 0.290  2.245 

Q Avg 44176.8 573.0 0.358 2.696  

Q Avg cell 44177.0 573.0 0.361 2.739  

Independent Sample Counts 

Original  1522.3 21.4 - - 

DP  1522.1 21.4 0.245 0.350 

PRAM  1522.3 21.4 0.289 0.401  

Q  1522.5 21.4 0.337 0.491  

Independent Weighted Counts 

Original 43921.2 567.3 - - 

DP Avg 43916.0 567.5 0.253  1.920 

PRAM Avg   43922.1  567.1 0.297 2.206  

PRAM Avg cell 43921.8 567.1 0.307 2.232 

Q Avg 43927.2 567.6 0.346  2.697 

Q Avg cell 43925.2 567.6 0.357 2.742 

 

From Table 5, all confidentiality protection approaches in both the case 

of dependent and independent attributes preserve the overall sample 

and weighted totals with differential privacy (DP) slightly 

outperforming post-randomization (PRAM) and drop/add-up-to-q (Q) 

with a smaller percent relative absolute difference.  DP also has 

smaller Hellinger’s Distances compared to PRAM and Q which is not 

surprising given that PRAM and Q have more perturbation compared 

to DP. We note that   the DP approach is unbiased if there are no 

negatively perturbed sample counts which are converted back to 

zeros.  Q is also an unbiased perturbation mechanism although given 

the uniform distribution of perturbing cell counts, there are more cells 

that are  perturbed. PRAM on the other hand has a perturbation 

mechanism that biases the perturbation at the tail ends of the 



distribution. Results in Table 5 show no discernible differences for 

tables with dependent or independent attributes.  

 

In Figure 1 we show a risk-utility confidentiality map summarizing 

our findings for the dependent attribute tables where the Y-axis 

presents  the risk measure RM and the X-axis the Hellinger’s Distance 

(in reverse order). The figure shows that DP in the upper right hand 

quadrant has the highest risk measure and the highest utility and Q in 

the lower left hand quadrant has the lowest risk measure and the 

lowest utility.  

 
 

 
Figure 1: Risk-Utility confidentiality map on dependent attributes (Y-axis: 

RM=1- (
H(a|b)

H(a)
) ; X-axis: HD(a, b) (reverse order)) 

 

 

We now turn to assessing the impact of the perturbations on statistical 

inference, in this case the Chi-square test for independence.  Figure 2 

show the chi-square statistics calculated from the weighted sample 

counts under the dependent attributes. Note that we do not account 

for any survey design features in our calculation of the chi-square 

statistic. We see little differences in the confidentiality protection 

approaches on the chi-square statistic. All p-values (not shown here) 

were close to zero for all confidentiality protection methods and hence 

there would be no change in rejecting the null hypothesis of 

independence in a statistical test.  
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Figure 2: Chi-square statistics for tables of dependent attributes according to 

confidentiality protection methods (500 replications) 
 

Figures 3 and 4 show the chi-square statistics and their associated p-

values calculated from the weighted sample counts under the 

independent attributes. Here we can see that the perturbations for all 

confidentiality protection methods distort the independent attributes 

and introduce dependencies which increase the chi-square statistics 

and pushes p-values to be close to zero.  DP is slightly outperforming 

PRAM and both are performing better than Q with the mean of the 

chi-square statistics closer to the true mean, although Q has less 

outliers and seems to be more stable.  It is clear that using perturbed 

tables naively as if they are original tables will severely bias statistical 

inference. Since DP is based on a probability mechanism that is not 

related to the original data and is grounded in computer science 

cryptography, the probability mechanism is not secret and can be 

released to the users.  Rinott, et al. (2018) show how to use DP 

parameters to adjust statistical inference for the case of a Chi-square 

test for independence.  

 

 

 

 

 

 



 
Figure 3:   Chi-square statistics for tables of  independent attributes according 

to confidentiality protection methods (500 replications) 
 

 

 

 

 
Figure 4:   P-values for testing independence in tables with  independent 

attributes according to confidentiality protection methods (500 replications) 

 

4   Discussion 

We have shown that differential privacy (DP) can be a useful 

confidentiality protection method for a flexible table builder of survey 

weighted cell counts. The level of perturbation may be slightly lower 

according to the tested parameters compared to the SDL approaches 
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but given that the perturbation is independent of the data and that 

there is a very small parameter δ and hence a guarantee of a bounded 

ratio in (1), there may be  more protection against inferential 

disclosure. Furthermore, the consistency property of a flexible table 

builder across same cells in same domains ensures that the privacy 

budget ε will not be depleted. However, other disclosure risk measures 

from Table 4 which assess identity and attribute disclosures show that 

the SDL approaches may outperform DP. We have seen that the utility 

in DP is also better and since the perturbation mechanism is known 

and not secret, it can be used to compensate for the perturbation in 

statistical inferences.  This would not be the case for the SDL 

confidentiality approaches where the parameters of the perturbation 

are not made public. More research is needed to compare the 

confidentiality protection methods on other tables and on other 

surveys where survey weights may be more variable. 

There are a number of caveats to this simulation study:  

 We have set a rather high privacy budget ε  which we feel would 

be justified in the case of disseminating survey weighted cell 

counts through a flexible table builder. This is because there is an 

additional layer of protection afforded by the sampling and the 

underlying sample cell counts of the weighted cell counts are 

random. 

 To compare the confidentiality protection methods we have not 

focused on the marginal cell counts and assume that these are 

obtained by aggregating the internal cell counts of generated 

tables.  

 We have seen that perturbing the sample counts in the first step 

and then adjusting the survey weights according to the overall 

average survey weight to obtain the perturbed weighted cell count 

provided smaller distance metrics compared to using the average 

survey weight in the cell. However, this may be an artifact of the 

simulation study which had a generally low amount of variation 

in the survey weights. For larger survey weights with more 

variation, future work will explore the perturbation directly on the 

weighted survey counts.  
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