
1 23 July 2018 

 

A Probabilistic Procedure for Anonymisation 
and Analysis of Perturbed Datasets 

Harvey Goldstein 

University of Bristol and University College London 

and 

Natalie Shlomo 

University of Manchester 

Abstract 
 

The requirement to anonymise datasets that are to be released for secondary analysis needs to 

be balanced by the need to allow their analysis to provide efficient and consistent parameter 

estimates. The proposal in the present paper is to use the addition of random noise to some or 

all variables in a released (already pseudonymised) data set where the values of some 

identifying variables for individuals of interest are also available to an external ‘attacker’ who 

wishes to identify those individuals so that they can interrogate their records in the dataset. 

To avoid such identification enough noise needs to be generated and added to these 

identifying variables.   The noise so generated then needs to be accounted for  at the analysis 

stage to provide required parameter estimates. Where the characteristics of the noise are made 

available to the analyst by the agency providing the data, we propose a method that allows a 

valid analysis.  This is formally a measurement error model and there exist procedures for 

model fitting that recovers consistent estimates of the true model parameters. The paper 

shows how an appropriate noise distribution can be determined and at the analysis stage 

describes a Bayesian MCMC algorithm that allows for noise removal.   
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1. Introduction 
Providers of datasets for research purposes are typically confronted by a tension between 

making available useful fit-for-purpose data retaining the fine grain with which the data were 

obtained, and ‘perturbing’ the data sufficiently so that, even without obvious identification 

information such as name, birth data, address location, an ‘intruder’ or ‘attacker’ cannot 

easily obtain the identity of any given person within the dataset. A review of procedures for 

anonymization of such public use datasets is given by Willenborg and De Waal (2001) and 

Hundepool, et al. (2012) and references therein.  

 

In the present paper we develop an approach that seeks to perturb data in such a way that the 

disclosure risk can be quantified while at the same time allowing a data analyst to fit models 

that respect the fine grain of the original data. The general idea is to use the addition of 

random noise to some or all variables in a data set where the values of those variables for 

individuals of interest are also available to an external attacker who wishes to identify those 

individuals so that they can interrogate their records in the dataset. The idea is that this avoids 

identification by an attacker via the linking of patterns based on the values of such variables.  

The noise so generated can then be removed at the analysis stage if its characteristics are 

known, requiring disclosure of the distribution parameters generating the noise by the 

statistical agency. This leads to consistent model parameter estimates, although a loss of 

efficiency will occur. In contrast, the usual method of anonymisation by coarsening the data 

such as grouping, would not allow the retrieval of the model parameter estimates.   

 

The basic concept is discussed in some detail by Fuller (1993) and also by Winkler (1998). 

Fuller (1993) points out that the optimum approach is where the random noise is added 

independently for each variable in the dataset and we shall also make this assumption. He 

treats the case of normal measurement errors and true data that have a multivariate normal 

distribution (also used as an approximation for discrete data). He derives a probability that 

any given record in the released data can be identified as the ‘correct’ one based upon a 

subset of the variable values that are known to the attacker. His method of constructing the 

perturbed data is designed to provide almost unbiased inferences for linear models and he 

discusses some of the difficulties for non- linear and non- additive models.   

 

Another approach for additive random noise is to add correlated random noise (see:   Kim, 

1986, Little,  1993, Ting, Fienberg and Trottini, 2008 and Shlomo, 2010).     Here the noise 

that  is added is a  linear function of the variables to be perturbed. This preserves sufficient 

statistics in the form of means and covariance matrices, without requiring knowledge of the 

precise parameter values used to generate the noise, which Fuller’s procedure requires. The 

main drawback, is that it is restricted to models that can be fitted using sufficient statistics 

such as linear regression, and thus excludes, for example, generalised linear models and 

multilevel models.    It also does not allow diagnostics based on residuals since the 

production of residual estimates requires knowledge of the noise parameters. Our approach 

allows for  generalised linear and nonlinear models to be fitted to noise-added data within a 

more general measurement error modelling framework than that of Fuller (2006), and 

requires knowledge of the parameters used to generate the noise. 

 

 

Releasing parameters used to generate the noise is common practice in the cryptography 

literature in Computer Science in order to be able to decode encryptions although it is rarely 
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done at statistical agencies.  Cox et al. (2011) discuss the need for transparency in which a 

statistical agency releases information about the disclosure control processes used to 

transform the original data to the masked released data. They distinguish between legitimate 

users and intruders and advocate controlled release of the parameters used to generate the 

noise so that legitimate users can carry out statistical inferences. Hence we will assume here 

that the parameters for generating noise are known, either released to trusted users or are in 

the public domain as is the case for the computer science additive noise approach of 

Differential  Privacy (Dwork, 2006).   

 

It has long been recognized by statistical agencies and data custodians that there is always  a   

trade-off between reducing disclosure risk through statistical disclosure control methods  and 

preserving the analytical properties of the data (Winkler, 1998). However, if stochastic 

perturbation methods are used to anonymise the data, then, as we demonstrate, the  statistical 

analysis is able to   account for both the   measurement errors and the substantive model of 

interest. In particular, the greater degree of noise that is added, the lower the statistical 

efficiency in terms of larger interval estimates for parameters.   

 

Section 2 discusses the technique of anonymisation by adding random noise thus inducing 

measurement errors into statistical models and how the disclosure risk can be quantified. 

Section 3 contrasts this technique with other common approaches of anonymisation. Section 

4 presents a simulation study on disclosure risk assessment under the proposed approach. 

Section 5 describes how the anonymisation by adding random noise can be applied to 

categorical variables and Section 6 on other extensions using varying noise parameters. 

Section 7 describes how we can compensate for the induced measurement error in statistical 

analysis with a more detailed description in the appendix where the proposed approach is 

shown to apply generally to complex models including nonlinear and multilevel models.  

Section 8 presents a simulation study fitting statistical models under induced measurement 

error and Section 9 presents both the disclosure risk assessment and statistical modelling on 

real datasets. We conclude with a discussion in Section 10.     

 

2. Measurement errors 
Consider a subset of q variables, y, that are to undergo a statistical disclosure control method.   

We may also have other variables, say x, that are available to the data analyst but which 

singly or jointly have little relationship with this subset. In an extreme case such variables 

may not exist so that effectively the subset q is the complete set of available variables. We 

assume that the attacker   has knowledge of the anonymisation techniques being used. We 

deal first with the case of a set of continuously distributed variables assumed to be 

multivariate normal (MVN).  

 

We suppose that the attacker has a set of values on the q variables, say 𝑦∗, that she intends to 

match against records in the dataset. We introduce random noise in the form of q variates m 

and for simplicity we shall consider the special case where these variates are independent. 

We have 

𝑧 = 𝑦 + 𝑚, 𝑦~𝑀𝑉𝑁(𝜇, Ω),     𝑚~𝑀𝑉𝑁(0, Ω𝑚),     𝑧~𝑀𝑉𝑁(𝜇, Ω + 𝜎𝑚
2 𝐼),    Ω𝑚 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  

The value of Ω𝑚 will determine the strength of the resistance to attack. In the appendix  we 

will introduce a more general notation. 
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We now form a measure of the distance between 𝑦∗ and all possible values of z and rank 

these distances. We shall assume that the values 𝑦, are without error, although our procedure 

can be extended to that case straightforwardly. We also assume that for each record 

belonging to the attacker there does correspond a record in the dataset and that some or all the 

variables may have  their true values. From the attacker’s perspective the best case scenario is 

where all her variables have the true values, and we shall assume that this is the case in our 

simulations and substantive example.  

 

We first consider measuring the distance between the attacker’s data and each record in the 

dataset. We shall then briefly consider how an attacker might be able to improve their chance 

of detecting the desired record.  

 

A general distance measure can be written in the form  

𝐷∗ ∝ (𝑧 − 𝑦∗)𝑇𝑊(𝑧 − 𝑦∗) , and where in the case of independence we have the Euclidean 

distance for each comparison record i and we have 

𝐷𝑖
∗ = ∑ (𝑧𝑖𝑗 − 𝑦𝑗

∗)2,    𝐷𝑖 = ∑ (𝑦𝑖𝑗 − 𝑦𝑗
∗)2,      𝑖 = 1, … . , 𝑛𝑞

𝑗=1
𝑞
𝑗=1                         (1) 

For a given attacker record we form 𝑟𝑖
∗ = 𝑟𝑎𝑛𝑘(𝐷𝑖

∗), and 𝑟𝑖 = 𝑟𝑎𝑛𝑘(𝐷𝑖), 
and let   𝑖∗ be the value of 𝑖 for 𝑟𝑖

∗ = 1, that is the closest record for the attacker in terms of 

the distance measure.  We define ℎ = 𝑟𝑖∗ − 1  which is the difference in ranks between the 

record identified by the attacker and the rank of the actual closest record and we refer to it as 

the h-rank disclosure index for 𝑦∗, or simply as the h-index. Thus if h=0 we have the correct 

match. We also note that the record held by the attacker may not correspond to any individual 

in the dataset so that a correct match will never occur. 

 

We therefore need to determine 𝜎𝑚
2  such that 𝐸(ℎ) is large enough (for example taking the 

value  of 3) to create sufficient unreliability of determining the correct record for the attack 

not to be worthwhile. Alternatively, we could require  

 Pr(ℎ < 𝑝) < 𝜖                          (2) 

where a suitable choice might be, say,  𝑝 = 3, 𝜖 = 0.1.  

 

The distribution of h will in general be a function of 𝑦∗, for example if  𝑦∗ is a multivariate 

‘outlier’ the attacker is more likely to find the correct match. In the simulation discussed in 

Section 4 we will examine the performance of the procedure with respect to values of 

percentiles of D.  We shall not consider the case where we can randomly create missing data 

except to note that this will contribute to the unreliability of the matching process. In fact data 

values may be missing in any given dataset so that our computations in that respect represent 

a best case scenario. 

 

In principle, an attacker who has access to the noise parameters  may be able to utilise this to 

improve their attack strategy by making use of this information.  

Thus, with knowledge of Ω𝑚 rather than utilising 𝑧, the attacker could obtain more precision 

since they would be able to estimate  

𝑧∗ = 𝐸(𝑦|𝑧) = (𝑐𝑜𝑣(𝑧))
−1

𝑐𝑜𝑣(𝑦) × 𝑧                                     (3) 
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In the case of independent random noise for normal variables a simple procedure would be to 

use 𝑧𝑗𝑅𝑗 for variable j, where 𝑅𝑗 = 𝜎𝑦
2/(𝜎𝑚

2 + 𝜎𝑦
2) is the ‘reliability’ of the observed variable. 

We will investigate any advantage to the attacker that the use of (3) might bring in the 

simulation discussed in Section 4. We also point out in the discussion that  information about 

Ω𝑚 can be limited to   accredited data analysts through secure settings.  

 

3. Similarity to other methods 
Standard procedures for anonymisation are typically based upon a distinction that is made 

between primary individual identifiers such as name and birth date, quasi identifiers such as 

ethnic group and sensitive identifiers  such as disease diagnostic categories that may have 

disclosive values. Thus k-anonymity models and extensions such as l-diversity and t-

closeness consider two stages. In the first the values for the primary identifiers are coarsened 

to the extent that in the final data set there are at least k records that have identical  identifier 

values, for any given set of identifier values (a k-anonymity data cell). In the second stage the 

simplest form of l-diversity requires that for any quasi-identifier there are at least l distinct 

values for each k-anonymity data cell. For t-closeness the difference (using a suitable 

measure) between the distribution of the l values in the data cell and the distribution in the 

whole sample should not exceed a threshold t. These methods may also lead to the 

suppression of certain variable values to ensure the required anonymity level. (see for 

example, the Statistical Disclosure control package http://cran.r-

project.org/web/packages/sdcMicro/sdcMicro.pdf ). One of the drawbacks of such methods is 

that they may remove or degrade too much identifying data that is of importance to the data 

analyst. 

 

Other approaches that focus  on estimating the risk of  re-identification of a data subject with  

noise-added  data are found  in Winkler (1998) based on probabilistic record linkage and in 

Reiter  and Mitra (2009)    and   Shlomo and Skinner (2010) on using probabilistic modelling 

to estimate  a probability of re-identification  whilst accounting for the perturbation. Reiter 

and Mitra (2009) also accounts  for intruder knowledge.  Winkler (1998) in particular 

concluded that even moderate amounts of additive noise where some of   the analytical 

properties of the data are preserved  may still have considerable disclosure risks.   

 

  

 

Polettini and Arima (2015) propose a method for inference under perturbed data   that has 

similarities to our own. They develop it in the context of small area estimation where the 

predictor variables have been masked using the post-randomization method (PRAM) 

(Gouweleeuw, et al., 1998).   They apply a Bayesian algorithm to the data measured at the 

aggregate small area level, where categorical data are approximated by a multivariate normal 

distribution and  where the adequacy of the approximation is a function of the number of 

individual records within an area. Our own procedure primarily operates at the level of 

individual records and does not involve such approximations. It can also be used to deal with 

data aggregated to higher levels as explained below.  Woo and Slavkovic (2014) also  discuss 

logistic regression with variables subjected to PRAM.  

    

We make no distinction between primary, quasi and sensitive identifiers, although all could 

be incorporated in the distance computation if needed. Our proposed method is essentially 

http://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
http://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
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probabilistic rather than one that guarantees a given level of anonymity, as in the standard k-

anonymisation methods. The key element, however, is that from the data analyst’s viewpoint 

there is no data coarsening, for example by grouping or truncating extreme values, with 

potentially enhanced quality for the inferences. It is applicable to all statistical models, in 

particular the family of generalised linear models, for which  measurement error methods can 

be applied. Where there are established procedures for diagnostics these can also be utilised 

since the estimation as described in the appendix provides the necessary parameters for the 

model of interest.  

 

Adding noise is similar in some ways to the so-called fully synthetic data approach where 

data is generated from a series of predictive distributions (Rubin, 1993 and Reiter, 2005). Our 

proposed approach for measuring disclosure risk and analysis is applicable in this setting as 

well. 

4.   A simulation for disclosiveness 
We generate a series of simulated datasets with 1000 records with  a mean vector of zero,  

q=5 and 𝜎𝑚
2 = 0.1 and Ω has all variances =1 and covariances = 0.25. This value of q is 

chosen since it will typically represent the number of identifiers available, but we have varied 

this as well below.  

For each true value record, treating it as a potential attacker record we generate 𝐷𝑖 as in (1). 

We choose 9 values representing approximately deciles of the distribution of 𝐷𝑖, to define 

suitable attacker records 𝑦∗. The distribution of h varies by decile with greater precision of 

attack at extreme values and we show results for different deciles. The choice of standardised 

variates simplifies the computations somewhat. 

 

Routines are written in MATLAB. Based on 1000 simulations we obtain the following results 

in Table 1 for the cumulative distributions. 

 

 

Table 1. Cumulative percentage distribution for h for deciles of the distribution of 𝐷𝑖  

h Decile 

      10             20              30            40            50             60           70              80            90 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

    52.2          49.4          43.9         41.3         41.7         43.5        40.5          47. 0        56.2    

    62.9          60.7          56.1         53.1         53.1         54.3        53.0          58.3         67.3        

    70.0          65.3          62.0         61.2         60.8         61.8        60.9          64.7         73.8 

    74.7          70.2          68.6         66.0         65.8         66.6         65.8         70.3         77.9 

    78.5          74.4          72.8         70.1         68.7         70.0         69.6         73.8         81.8 

    80.8          77.5          76.5         72.7         71.5         72.1         72.8         76.8         84.3 

    83.1          79.9          78.1         74.3         74.1         74.8         75.5         78.7         86.2 

    84.4          82.4          80.6         76.5         76.1         76.2         78.0         81.2         87.3 

    85.9          83.9          81.7         78.7         78.2         77.8         80.0         83.9         88.9 

    87.7          84.9          83.5         79.5         79.4         80.2         81.8         84.9         90.7 

    89.1          86.4          85.0         81.1         81.2         81.8         83.2         86.6         91.9 

    90.1          87.1          85.4         82.4         83.5         83.2         84.1         87.4         92.9 

    91.1          88.3          86.1         83.8         84.6         84.7         85.3         88.2         93.9 

    91.9          88.8          87.1         85.3         85.6         85.8         86.6         89.1         94.3 

    93.0          89.3          87.8         86.5         86.1         86.6         87.5         90.0         95.0 

    94.2          90.1          88.1         87.4         86.6         87.4         88.0         90.2         95.1 
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16 

17 

18 

19 

20+ 

    94.9          91.1          88.8         88.0         87.5         87.9         88.5         90.9         95.1 

    95.2          91.7          89.3         88.8         88.5         88.5         89.5         91.4         95.6 

    95.7          91.9          89.8         90.0         89.6         89.1         90.1         91.8         95.9 

    96.5          92.6          90.3         90.9         90.0         89.9         90.5         92.4         96.6 

  100.0        100.0        100.0       100.0      100.0       100.0       100.0       100.0       100.0 

 

Thus, from the viewpoint of the attacker, in more than 40% of the cases the nearest record is 

not the true one. For the 10
th

  decile 𝑝𝑟(ℎ > 3) = 0.25 and 𝑝𝑟(ℎ > 5) = 0.19 . For the 

median an attacker has a harder time with 𝑝𝑟(ℎ > 5) = 0.29. Depending of course on the 

degree of disclosure risk that can be tolerated, it could be argued that this is adequate to make 

an attack too unreliable to be worthwhile. 

For the weighted distance case in (1) where 𝑊 = Ω we obtain essentially similar results. 

 

We have also run the simulation  with larger sample sizes and we find that at the lowest 

decile for a greater sample size of 10,000  𝑝𝑟(ℎ > 3) = 0.60 and 𝑝𝑟(ℎ > 5) = 0.54.  

 

We now look at a range of values for Ω 𝑎𝑛𝑑 𝜎𝑚
2  and different sample sizes. We study just the 

case for the lowest decile: an individual with more extreme values presents a target that is 

more favourable to an attacker. We present results for 𝑝𝑟(ℎ > 5) and for two different 

sample sizes, in Table 2. 

 

Table 2.  Lowest decile estimates for h 

pr(h>5) for combinations of Ω 𝑎𝑛𝑑 𝜎𝑚
2  where Ω always has unit diagonal 

elements and equal off-diagonal elements (given by columns) are shown.  

Sample size =1000  

𝜎𝑚
2 . 0.1 0.2 0.3 0.4 0.5 

0.1 0.15 0.16 0.19 0.23 0.24 

0.2 0.45 0.43 0.46 0.50 0.54 

0.3 0.58 0.63 0.63 0.65 0.70 

0.4 0.73 0.74 0.74 0.76 0.77 

Sample size =5000  

𝜎𝑚
2 . 0.1 0.2 0.3 0.4 0.5 

0.1 0.41 0.48 0.48 0.50 0.55 

0.2 0.72 0.71 0.75 0.77 0.80 

0.3 0.84 0.84 0.87 0.88 0.89 

0.4 0.90 0.90 0.92 0.90 0.93 

pr(h=0). For combinations of Ω 𝑎𝑛𝑑 𝜎𝑚
2  where Ω always has unit diagonal 

elements and equal off-diagonal elements (given by columns) are shown.   

Sample size =1000  

𝜎𝑚
2 . 0.1 0.2 0.3 0.4 0.5 

0.1 0.56 0.54 0.53 0.49 0.45 

0.2 0.27 0.27 0.24 0.23 0.18 

0.3 0.16 0.13 0.15 0.12 0.09 

0.4 0.10 0.09 0.010 0.08 0.07 

 



8 23 July 2018 

 

We see that even with the smaller sample size of 1000, and moderate proportions of noise 

(10% of the variance of the true values), we have reasonably high probabilities of h 

exceeding a value of 5 and small probabilities that the nearest record is the correct one.  

We now study what effect the use of (3) has, that is when the attacker makes use of 

information about the parameters of the noise distribution. 

 

 

Table 3. Cumulative percentage distribution of h for deciles 

of the distribution of 𝐷𝑖  where noise   parameters are known 

and expected values of identifiers with noise are used 

h Decile 

    10               20           30           40           50     

0 

1 

2 

3 

4 

5 

   54.7          48.7         44.3       41.3         45.4    

   67.1          61.8         54.5       55.6         57.0    

   73.1          68.2         62.8       64.1         63.7     

   78.6          72.4         66.7       69.3         68.4    

   81.9          75.3         70.6       73.1         72.4 

   84.5          79.3         73.7       75.4         74.9     

 

Table 3 shows, for ℎ = 1, … 5, and for the 10
th

-50
th

 percentiles, the percentage distributions 

of h when knowledge of the noise parameters is used as described in (3)  under the same 

simulation conditions as Table 1.  Comparing with Table 1 we see generally small increases 

in the cumulative probability that an attacker selects a record close to the correct one. 

 

We would expect that the probability of the attacker selecting a record close to the correct 

one will increase with the number of distinct identifiers used. Thus, for example, if there are 

10 identifiers and we simulate with the same value for Ω as before, we now need a noise 

parameter Ω𝑚 = 0.34 rather than Ω𝑚 = 0.1   to obtain approximately the same values for the 

distribution of h. This suggests that careful consideration needs to be given to the likely 

number of identifiers available to the attacker. We have also varied the size of the 

covariances from 0.1 to 0.5, but this has only a small effect on the distribution of h, with a 

decrease in the covariance associated with a slightly higher risk of disclosure, for example for 

the 5
th

 percentile the 𝑝𝑟(ℎ = 0) is 0.47 for a covariance of 0.5 as opposed to 0.53 with a 

covariance of 0.1 as in Table 1. 

5. Misclassifications for categorical variables 
Consider, for simplicity, a series of q independent binary identification variables. We assume 

that one of the categories is small e.g. 𝜋 = 𝑝𝑟(𝑦 = 1) = 0.1. Thus, if q=3, with 𝜋𝑖 = 0.1, 𝑖 =
1, … ,3 then the most favourable vector 𝑦∗ is 𝑦𝑖 = 1 ∀ 𝑖.  

 

Suppose now we introduce a simple misclassification where for each 𝑖|𝑦𝑖 = 0 independently, 

we randomly assign 𝑦𝑖 = 1 with probability 0.1. Thus for each binary variable we now have 

𝑝𝑟(𝑧𝑖 = 1) = 0.19. The probability that all three variables have value 1 i.e. 𝑝𝑟(𝑧𝑖 =
1), ∀ 𝑖 =  0.193 = 0.007, whereas 𝑝𝑟(𝑦𝑖 = 1), ∀ 𝑖 =  0.13 = 0.001. Thus of those identified 

only 15% are correctly identified. Such procedures for categorical variables have been 

implemented in the PRAM method (Gouweleeuw, et al., 1998).  
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For multicategory, including ordered and unordered variables, we can alternatively consider 

the following, simpler, procedure. Numbering the categories 𝑗 = {1, … . , 𝑝} we independently 

add to the true category code noise  

𝑚𝑗~𝑁(0, 𝜎𝑚
2  ), 1 ≤ 𝑚𝑗 ≤ 𝑝                                        (4) 

 

This results in a truncated normal distribution and the variable enters (1) along with the 

continuous variables. The purpose of the truncation is to avoid easy detection for the extreme 

category codes. We could also generalise (4) to allow different variances for each category. 

We note that the noise is simply added to the category codes {1, … . , 𝑝}, irrespective of 

whether this is an ordered or unordered variable. The MCMC steps described in the appendix 

show how we may then draw from the posterior distribution of the true (unknown) category 

codes. To avoid the potential objection that it may be confusing to release categorical 

variables (with added noise) as continuous, we also describe in the appendix, how a rounding 

of the noise-added values to integer values can also be used, although this will result in less 

efficient estimates. 

6. Fitting models with known noise or measurement error  
 

Bayesian procedures for fitting models with measurement errors have been proposed 

(Richardson and Gilks, 1993) and these have been further developed to fit multilevel data 

structures and allow models that include interaction and power terms. The noise that is added 

in our procedure has the characteristics of measurement error and can be treated as such. An 

outline of a general algorithm with details specific to data anonymisation is given in the 

appendix, and further details of the estimation algorithm can be found in Goldstein and 

Browne (2017). Other methods for estimation of models with measurement errors are also 

available, such as the simulation-extrapolation method, SIMEX (Delaigle and Hall, 2008)  

and moment based estimators described by Fuller (2006), and these can also be used. . The 

Bayesian model procedure  that we describe  has the advantage that it is a fully specified 

probabilistic model that is readily generalised to handle complex data structures including 

multilevel and generalised linear models without approximations, with straightforward 

computation of interval estimates. 

 

Full estimation details are given in the appendix, and can be summarised as follows. For ease 

of exposition we assume a single level linear model with just a single predictor variable that 

has added noise. The case of several predictors with independent added noise and the case 

where we have a generalised linear model and the multilevel case follow straightforwardly. 

We   assume here multivariate normality for the noise and discuss the modifications needed 

to fit generalised linear models and multilevel models in the appendix.  

 

Define the true values of the variable with added noise as 𝑋1 and those variables without 

added noise as 𝑋2, and 𝑋 = [𝑋1 𝑋2] where 𝑋2 is known. 

Define the joint model – the noise or measurement error model (MEM) in two parts, (5a) and 

(5b) and the model of interest (MOI) (5c). 

𝑥1 = 𝑋1 + 𝛾1                                                      (5a) 

𝑋1 = 𝑋2
𝑇𝛼 + 𝛾2                                                   (5b) 

𝑌 = 𝑋𝛽 + 𝑒                                                     (5c) 
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where 𝛾1~𝑁(0, 𝜎_𝛾1
2 ),    𝛾2~𝑁(0, 𝜎_𝛾2

2 ),   𝑒~𝑁(0, 𝜎𝑒
2).  We note that the MOI (5c) may contain 

functions of the  𝑋1, such as interaction or power terms.  Lower case variables define 

observed and upper case true values, and we assume the residual terms in (5a)-(5c) are 

independent. 

 

The appendix details the MCMC steps required to fit this model. In brief this involves the 

following steps: 

1). Update the true values using a metropolis step, conditionally on the current values of the 

other parameters 

2). Update the  𝛼 parameters using a Gibbs step, conditionally on current values of the other 

parameters 

3). Update the 𝛽 parameters using a Gibbs step, conditionally on current values of the other 

parameters 

4). Update the variance and covariance parameters, conditionally on current values of the 

other parameters 

 

In the appendix we also discuss the following extensions and the difficulties associated with 

them. Where we have added noise in the response variable, the general effect of correcting 

these is to shrink the estimate of the residual variance and hence inflate the standard errors for 

the parameters. Where the response is categorical, notably binary, a further step in the 

algorithm is involved. We also discuss in the appendix how to deal with variables that have 

been truncated, for example to handle large outliers, and how to handle categorical variables 

that are presented rounded to the nearest integer value. 

After fitting a suitable model such as the above, the original variable scales and relationships 

are fully recovered, albeit with a loss of efficiency – which with very large datasets may not 

be an important issue. The loss of efficiency, in terms of interval estimates or standard errors 

associated with parameter estimates can be estimated for any proposed model to be fitted to 

the perturbed data, given the noise parameters. Thus, for example, in the simple regression 

case where independent normal noise with a common variance 𝜎𝑚
2  has been added to the set 

of predictors 𝑋, we can use as a simple overall measure for the relative efficiency the 

determinental ratio (|𝑋𝑇𝑋|/|𝑋𝑇𝑋 + 𝑁𝜎𝑚
2 |) where X includes those with and those without 

measurement errors and N is the sample size. The data provider would be able to supply such 

estimates, but perhaps of more use will be estimates of the inflation of standard errors, for 

some typical models, associated with individual parameters. These could be provided 

alongside the released data or possibly requested from the data provider by a data analyst 

with respect to any given fitted model. We illustrate the effects on standard errors in our 

example analysis in Section 9. 

 

Where the original variables are also subject to measurement errors with known distributions 

the fitted model will be based upon the total measurement error. 

In the case where the data provider wishes to impose additional, known, data constraints (see 

discussion in Section 9) some modification to the estimation algorithm will be needed to 

incorporate these. The appendix also indicates how these can be incorporated. 
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7. A simulation of a measurement error model 
We carry out a simple simulation from the following model, in order to illustrate that we can 

readily recover the signal from noisy data for both a binary and continuous predictor. The 

model we simulate from is given by 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝑒𝑖,        𝑒𝑖~𝑁(0,1),  𝛽0 = 𝛽1 = 𝛽2 = 1                                 (6) 

(
𝑥1

𝑥2
∗) ~𝑁 ((

0
0

) , (
1 0.5

0.5 1
)) ,  𝑥2 = 0 𝑖𝑓 𝑥2

∗ ≤ 0;   𝑥2 = 1 𝑖𝑓 𝑥2
∗ > 0;    

Independent noise with variance 𝜎𝑚
2 = 0.2 is added to 𝑥1, 𝑥2. We carry out two sets of 100 

simulations with 1000  records. The results are given in Table 4. 

 

Table 4. Estimates from addition of noise (standard errors in brackets*). MCMC 

burn in =500 iterations=500. Simulations from model (5)  Sample size = 1000, 

number of simulations = 100  

Parameter Simulation 

parameters 

Noisy data no 

adjustment 

Noisy data 

adjusted   

Noisy data 

adjusted  

            % bias 

𝛽𝑜 1.0 0.974 (0.004) 0.997 (0.003) -0.3 

𝛽1 1.0 0.887 (0.002) 1.004 (0.003) 0.4 

𝛽2 1.0 1.051 (0.005) 1.003 (0.005) 0.3 

𝜎𝑒
2 1.0 1.0 1.0 0 

*The standard error estimates are the standard deviations computed from the MCMC 

chains. 

 

We see negligible bias, no more than 0.5% for the adjusted estimates and in all cases the 95% 

confidence interval overlaps the true value. 

 

8. Example analyses 
Our first example illustrates just the use of a measurement error model for two level data 

where we have added noise and used the   procedures in the appendix to estimate the true 

model parameters. The data will be referred to as the Tutorial dataset (Goldstein et al., 1993). 

The response is a normalised examination score taken at age 16 by 4059 students in 65 

schools in Inner London. The predictor variables are a standardised reading test score taken at 

age 11 (𝑥1) before pupils attended their secondary school and the binary variable gender 

(𝑥2). A 2-level variance components model is fitted: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑖𝑗 + 𝛽2𝑖𝑗𝑥2𝑖𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗,    𝑢𝑗~𝑁(0, 𝜎𝑢
2),     𝑒𝑖𝑗~𝑁(0, 𝜎𝑒

2)                        (7) 

 

To illustrate our procedure we add normally distributed noise with mean 0 and variance 

𝜎𝑚
2 = 0.2  independently to the reading score and gender. For gender, values less than 0 are 

set to 0 and values greater than 1 are set to 1. The principal purpose of the first example is to 

show how adjusting for the added noise produces consistent estimates rather than to explore a 

range of values against disclosure risks. 

 

Table 5 shows the results from fitting the model before adding noise, fitting the model with 

added noise but without adjusting for measurement error and fitting adjusting for 
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measurement error. Only one application of measurement error addition has been used to 

produce these results and the response variable is not perturbed.   

 

 

Table 5. Tutorial dataset. Estimates from addition of noise 

(standard errors in brackets). MCMC burn in =500 

iterations=500. Standard errors in brackets using MCMC chain 

standard deviation estimates. Normal noise variance 0.2. 

Parameter Original 

model 

Noisy data no 

adjustment 

Noisy data adjusted 

𝛽𝑜 -0.097 (0.050) -0.082 (0.044) -0.093 (0.042) 

𝛽1 0.559 (0.013) 0.460 (0.012) 0.549 (0.014) 

𝛽2 0.174 (0.033) 0.109 (0.030) 0.155 (0.035) 

𝜎𝑢
2 0.097 (0.021) 0.102 (0.022) 0.100 (0.020) 

𝜎𝑒
2 0.563 (0.013) 0.614 (0.013) 0.562 (0.014) 

 

We note that the adjusted estimates are close to those using the original data whereas 

ignoring the measurement error produces estimates with considerable biases.   

 

Our second example uses a dataset from a 1982 survey of the sugar cane farm industry in 

Queensland, Australia that was used in Chambers and Dunstan (1986).  

It illustrates both the measurement error model and the computation of the h-index for 

disclosiveness. In order to compare our approach for accounting for the measurement error in 

our analyses with the case of adding correlated noise and preserving sufficient statistics, we 

continue using a linear regression model. We note that under   more complex models such as 

generalized linear models, the correlated additive noise approach would not provide valid 

results.    

The model of interest has the sugar cane yield receipt as response (𝑦) and predictors are 

region (𝑥1, Northern=1, Southern=0), sugar cane harvest (𝑥2, continuous in tonnes) and cost 

(𝑥3, in Australian dollars). There are 333 farms in the dataset with no missing data.  

The model to be fitted is the linear regression model  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝑒𝑖           𝑒𝑖~𝑁(0, 𝜎𝑒
2)                         (8) 

 

We have added noise to the data in two different ways. In the first case we use correlated 

Gaussian noise as described in Shlomo (2010) and in the second case we add independent 

Gaussian noise to each variable as described in Section 2. In both cases, we add two levels of 

noise: the variance of noise  is 0.05 and 0.17  times the variance of the corresponding 

variance of the true values for each variable.      

 

We first present the results of fitting (8) to each of the noisy datasets in Tables 6a and 6b  and 

then present the results of computations on disclosiveness in Tables 7a and 7b. We note that 

for correlated noise the model is simply fitted to the observed data after a single draw and the 

reported standard errors are analytical resulting from the model fit.  For independent additive 

noise we use the procedures described in the appendix where reported standard errors are 

empirical resulting from the MCMC chains. Table  6a is  based on the case where noise is 

added to  the predictors only and Table  6b are based on the case where noise is added to both 

the predictors and the response variable. 
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Table 6a. Sugar cane farm data. Results of fitting (7) to 5% and 17% relative variance 

noisy data. Standard errors in brackets. Noise added to predictors only 

Predictors Only 

Parameter True data 

with no 

added noise 

Correlated 

Noise with 

5%  of 

variance 

added  

Independent 

Noise with 

5%  of 

variance 

added 

Correlated 

Noise with 

17%  of 

variance added  

Independent 

Noise with 

17%  of 

variance added 

𝛽𝑜  -7.89  

 (1.70) 

-6.01   

(2.25) 

-5.71  

(1.70) 

-3.56 

 (3.35) 

-9.16 

 (2.27) 

𝛽1  11.35   

(1.37)  

10.13 

 (1.83) 

10.03 

 (1.38) 

14.20 

 (2.68) 

13.05 

 (1.83) 

𝛽2  0.022 

(0.0007) 

0.022  

(0.0009) 

0.022  

(0.0007) 

0.021 

 (0.0014) 

0.021 

 (0.0011) 

𝛽3  0.00013   

(0.00004) 

0.00008 

(0.0006) 

0.00010 

(0.00004) 

0.00015 

(0.00008) 

0.00022 

(0.000070) 

𝜎2  146.2  

  (11.23) 

254.02 150.1  

(11.63) 

530.2 170.8  

(17.86) 

 

 

 

 

 

 

 

Table 6b. Sugar cane farm data. Results of fitting (7) to 5% and 17% relative variance 

noisy data.  Standard errors in brackets. Noise added to predictors and response 

Predictors and Response Variable 

Parameter True data 

with no 

added noise 

Correlated 

Noise with 

5%  of 

variance 

added  

Independent 

Noise with 

5%  of 

variance 

added 

Correlated 

Noise with 

17%  of 

variance added  

Independent 

Noise with 

17%  of 

variance added 

𝛽𝑜  -7.89  

(1.70) 

-7.33   

(1.71) 

-8.95 

 (2.88) 

-7.56 

 (1.81) 

-7.04  

(4.39) 

𝛽1  11.35  

(1.37)  

11.82 

 (1.41) 

11.91 

 (2.26) 

11.36 

 (1.43) 

11.38  

(3.64) 

𝛽2  0.022 

(0.0007) 

0.022  

(0.0007) 

0.021  

(0.0014) 

0.022  

(0.0007) 

0.022 

 (0.0031) 

𝛽3  0.00013 

(0.00004) 

0.00011 

(0.0004) 

0.00023 

(0.000086) 

0.00014 

(0.0004) 

0.00016 

(0.00019) 

𝜎2  146.2  

(11.23) 

148.01 180.7 

 (28.32) 

150.46 179.8 

 (73.3) 
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We see in Table 6a the negative effect of releasing one draw of correlated noise to users 

without providing the parameters of the noise distribution when only some of the variables  

intended for the statistical modelling have added correlated  random noise. Users will obtain 

biased estimates with very large standard errors.  This is not the case in Table 6b where all 

variables intended for the statistical modelling have correlated noise added to them. In that 

case, we obtain similar parameter estimates and standard errors to the model run on the 

original true data. Given that it is generally unknown what types of analysis will be carried 

out on the released perturbed data, it is essential that users obtain the noise parameters and be 

able to analyse the data  under measurement error using the procedures described in the 

appendix. We see in Tables 6a and 6b under these procedures that we obtain unbiased 

parameter estimates taking into account the measurement error regardless of which variables 

have been perturbed. We also see some considerably increased standard errors as greater 

amounts of noise are added.   For example, under the 17% of the variance of the true response 

variance for receipts, the variance of the response noise was set at 411 and this is nearly three 

times the true residual variance as estimated in Tables 6a and 6b. This governs the size of the 

standard errors. Even when the variances are chosen to be just 5% of the variances of the true 

values, we still see an increase in the standard errors.  

 

Table 7a presents  the values of the h-index for individual records chosen to represent both 

the centre and extremes of the data distribution, for different amounts of random noise on the 

correlated noise addition on all four variables (predictors and response variable): receipts, 

region, harvest and  costs and  similarly Table 7b presents the independently added random 

noise. To avoid skewness in these variables, the distances were calculated on standardized 

variables although given the nature of this data, some skewness remains.   

 

 

 

 

Table 7a.  Sugar cane data. Values of h-index for records at different 

multivariate distance quantiles. Random correlated  noise addition all 

variables as percentage of true variances 

Distance 

quantile 

h-index. 

 5% of true 

variance 

h-index.  

17% of true 

variance 

pr(h=0) 

  5% of true 

variance 

pr(h=0) 

  17% of true 

variance 

5 11.2 23.2 0.11 0.04 

10 17.2 29.8 0.05 0.05 

50 17.5 37.9 0.08 0.04 

90 2.7 10.7 0.43 0.17 

95 0.0 0.5 0.98 0.78 

 

Table 7b.  Sugar cane data. Values of h-index for records at different 

multivariate distance quantiles. Random independent noise addition 

all variables as percentage of true variances 

Distance 

quantile 

h-index. 

 5% of true 

variance 

h-index.  

17% of true 

variance 

pr(h=0) 

  5% of true 

variance 

pr(h=0) 

  17% of true 

variance 

5 7.0 16.0 0.12 0.06 

10 12.6 23.0 0.07 0.04 
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50 12.7 27.8 0.08 0.03 

90 1.7 6.8 0.38 0.15 

95 0.0 0.2 1.00 0.89 

 

From both Tables 7a and 7b, it is clear that in terms of their multivariate distance from the 

data centroid, the h-index values show a high level of disclosure protection for both the 5% 

and 17% relative variance added noise values  except for the far right tail due to the skewness 

of the data in the sugar farms dataset. In the latter case the data provider may well decide to 

group (truncate) the very large values, as we describe in the discussion below. Comparing 

correlated random noise addition in Table 7a with the independent random noise  addition in 

Table 7b, we see quite similar results for 𝑝𝑟(ℎ = 0), although the value of h overall does 

tend to be greater for the correlated noise. The 17% relative variance added noise values 

offers greater disclosure protection than the 5%  relative variance,  but this may still not be 

satisfactory and the data provider would then have a choice of increasing the amount of 

added noise, adopting a truncation procedure, or making the noise variance a monotonically 

increasing function of the true value. These options will be pursued in future research.    The 

results show also that the disclosure risks increase for the case of only perturbing the 

predictors and not the response variable.  

 

9.  Discussion 

We have shown that the disclosure protection provided by additive random noise addition 

increases with sample size and this will generally be of concern for sample surveys with 

relatively small sample sizes. For example, we see that with a sample size of only 1000, in 

the case most favourable to an attacker that we have explored in our simulation, the 

probability that the nearest record is the correct record is less than half. If an attacker has 

access to the noise parameters and utilises this information to obtain an estimate of the 

covariance matrix for the true values, our simulation suggests that there is only a small 

increase in the probability of selecting the correct record, and that this is of little practical 

importance. If the number of identifiers available to the attacker increases then this can 

enhance the chance of a successful attack. We have shown that we require rather larger 

amounts of noise as the number of identifiers available to the attacker increases so that a 

realistic assessment is needed on the  number of identifiers that may be  available to an 

attacker. On the basis of our simulation it appears that the disclosure risks are relatively 

insensitive to correlations between the identifiers. We would, however, caution that our 

simulations are limited and based upon an assumption of multivariate normality. Further 

research needs to explore more general cases and we would suggest that one responsibility of 

a data provider is to provide estimates for disclosure probabilities for their own data, based 

upon the distributions observed in the data. 

 

Our results are based on the assumption that the attacker has exact knowledge of who is in 

the dataset and some target individual’s exact  data points. In the absence of any other 

information available to the attacker, this is a worst case scenario and indeed in a sampling 

context, response knowledge is not assumed known.  Therefore, disclosure risks would be 

considerably less than our reported findings. If an attacker has some random data points from 

the population she will first have to check if the target  individual is in the dataset and that 

depends on the sampling fraction which are generally small. Often, a data attacker will have 

no pre-existing individual data and may be concerned to trawl the dataset to discover an 

‘interesting’ record, for example an individual with an unusual combination of values. 
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Having identified such an individual they may then attempt to identify the real person in the 

population using other variables in the data record. Our procedure is also relevant to such an 

attack so long as the noise has been applied to the variables in question.  

 

For the extremes of the distribution it would be useful for disclosure purposes, to apply 

measurement errors with larger variances. For example, if noise is added to a variable such as 

income, we might wish to make the variance of the noise a function of income itself. Such a 

function could be non-linear or a step function where all true value greater than a specified 

(absolute) value have additional noise added. Nevertheless, the release of the information 

describing such a functional relationship will generally be informative for individual records 

and so such information could be disclosed only to the accredited data analyst. In terms of the 

measurement error algorithm described in the appendix the value of the variance would 

simply need to be updated at each MCMC iteration with the current value for the true value 

of the variable. This is an area of further research to be pursued. 

 

There is an interesting contrast with the k-anonymity criterion that is often used as a measure 

of disclosiveness. If we have 2-anonymity this implies that an attacker is able to identify two 

individual records matching her own information, so that choosing either of them at random 

means that there is a probability of 0.5 that it is the correct one. The h-index, however, as 

quoted in the previous paragraph, only yields a single individual with a probability about 0.5 

and thus provides less information to the attacker than in the case of 2-anonymity. Indeed, an 

attacker may be quite content with the information that they can access 2 or perhaps even 5 

records containing the one that is sought. By contrast, with the h-index procedure, in our most 

favourable case the probability of the sought-for individual being one of the two nearest is 

just over 60% and one of the five nearest just under 80%, so that it could be argued that this 

is sufficient to deter an attacker and hence suitable in terms of protecting against disclosure.  

In practice careful attention needs to be paid to the amount of noise required to satisfy 

disclosure concerns and this is an area for further research. 

 

The generality of our procedure is that it makes no assumptions about the final model to be 

fitted, which we point out in the appendix can be a generalised linear model or a multilevel 

model with some or all of the variables perturbed, and the procedure allows a full range of 

exploratory analyses. Likewise, in contrast to previous work, it does not assume any 

particular distribution for the true values, at least for those used as covariates in the 

substantive model of interest.  

 

Our procedure can be contrasted with procedures based upon the production of fully synthetic 

data simulated from estimates of the structure of the real data where exploratory analyses are 

recommended prior to the choice of a small number of models to be fitted to the real data 

within a secure environment. Such procedures not only rely upon good estimates of the real 

data structure, they also rely upon exploratory analyses converging on the appropriate set of 

final models, and this is by no means guaranteed. We note, however, that in some cases  

where we wish only to fit a linear regression model a more tailored procedure such as that 

using correlated noise (Shlomo, 2010) may provide superior estimates. With our proposed 

procedure exploratory analyses would generally be carried out using the measurement error 

methods proposed. 
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For a response variable with added noise, the situation is more complex but for normally 

distributed responses we can carry out an analysis using the observed values to obtain 

consistent estimates. In this case we can obtain a consistent estimate for the residual variance 

by subtracting the (known) variance for the measurement errors in the response from the final 

estimated residual variance. The drawback, as illustrated in our second example in Section 9 

on the sugar cane farms dataset, is that where the proportion of variance explained is high, 

this will lead to large standard errors. In this case we can either add less noise to any 

variables that a given data analyst wishes to use as responses, or no noise at all. This would of 

course, require a close collaboration between data provider and data analyst in deciding 

which variables to perturb.     In our example this has little effect on the disclosiveness and in 

practice therefore will often be acceptable. For categorical responses as with continuous 

responses, when data are released it may be acceptable to provide any variable(s) to be 

treated as a response with its true values or with just a small amount of added noise. Where a 

categorical response has added noise it  is rounded to the nearest category value, for example 

0 or 1 in the case of binary data, and these values are then used as responses as described in 

the appendix. Since in general different data analysts may wish to treat different variables as 

responses, this implies that there should be a close liaison between the data provider and the 

analyst so that appropriate amounts of noise can be attached to each variable. One aspect of 

this to explore would be the implementation of automatic procedures for noisy dataset 

generation according to given specifications of disclosure risk and statistical estimation 

efficiency.    

 

In some cases we can reduce disclosure risk by first transforming one or more variables. This 

will often arise with skewed distributions with long tails where, for example, a logarithmic 

transformation will create fewer extreme values. In such cases the noise will be added to the 

transformed variable. In an analysis where the original variable is required in the model of 

interest, then for the likelihood term associated with the model of interest the back-

transformed value of the proposed value will be used (see appendix). 

 

A key issue, of course, is the requirement that the data provider supplies to the data analyst 

the necessary parameters used to generate the noise. Since the degree of privacy established 

needs to be published and the degree of privacy established is a function of these parameters, 

in a weak sense aspects of the noise will become publicly available. This, however is not 

seriously disclosive since a guarantee of h-level disclosure is only weakly informative about 

the noise parameter values themselves. Furthermore, we have also shown in Table 3 that even 

where the attacker has access to the noise parameters this does not materially improve the 

probability of disclosure. In addition, a further precaution is to release  the noise information 

only to   accredited data analysts under secure conditions, and thus it would be unavailable to 

an external malicious attacker.   

 

Whilst our proposed procedure can provide general protection against attack, a data provider 

may wish to guard against specific aspects of disclosiveness in the data, such as the presence 

of one or two very large outliers where the use of truncation on the perturbed data may be 

adequate. As long as the relevant information is made available, the analyst typically will be 

able to take account of these additional constraints in the analysis. As discussed in the 

appendix, it is possible to incorporate judicious groupings of data values within the 

estimation algorithm, and this allows the data provider some freedom in deciding where to 

coarsen particular data ranges. Further research exploring such possibilities, and in particular 
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investigating the trade-off between increased security and reduced efficiency, would be 

welcome. 

Data sets are often supplied with weights that may incorporate aspects of sample design or 

bias correction procedures. This poses particular problems for our procedure as it does in 

general for models utilising Bayesian methods. In a recent paper Goldstein, Carpenter and 

Kenward (2018) showed how weights could be incorporated in a Bayesian model for 

handling missing data. Goldstein, Browne and Charlton (2017) extend the model for missing 

data to handle measurement errors and the procedures for handling weights given by 

Goldstein et al. (2018) can be extended in a straightforward fashion to this extended model. It 

should also be noted that the ability of the extended model to handle both measurement errors 

and missing data allows our procedures to deal with the case where there are   missing values.  

 

The protection method of perturbing a few variables in released microdata and other  

common approaches such as truncation and grouping that we have presented here  are all 

standard statistical disclosure control (SDC) methods implemented by statistical agencies 

(Hundepool et al, 2012 and references therein).   The computer science definition of 

Differential Privacy (DP) also  assumes a worst case scenario that the attacker knows who is 

in the dataset and   does not take into account of any protection afforded by sampling. The 

perturbation mechanism in the DP setting is also additive random (Laplace) noise where the 

parameters of the noise distribution depend on a privacy budget and the ‘sensitivity’ defined 

as the maximum distance of two neighbouring datasets that differ in only one data subject. 

For more details on DP,  see Dwork (2006) and Dwork and Roth (2014).  However, DP is 

related to output perturbation where every query is perturbed and it is not relevant in our case 

where we release microdata with only a few variables perturbed, coarsened or truncated  as is 

the norm in  SDC practices at statistical agencies.  One   advantage of the DP framework is 

that the noise distribution does not need to be secret thus removing one potential threat, 

although this does not appear to be an insurmountable problem for our proposed method.  See 

Charest (2010) and Rinott et al.  (2017) for examples of inference under DP. 

 

There are practical considerations to be taken into account if our procedures are to be 

implemented. Not least of these is the need to provide easy-to-use software to perform the 

appropriate analysis on the noisy data and accompanying training materials. The software 

routines written in MATLAB(2017), used for the present paper are not optimised for either 

speed or user accessibility. They are, however, available by request from the first author. 

Finally, as we pointed out in the introduction, it is important to recognise that there is always 

a trade-off between reducing disclosure risk and increasing the complexity and efficiency of 

any resulting analysis. The more noise that is added, the lower the statistical efficiency. In 

practice the balance between exposure risk and analytical efficiency can be tailored to 

individual data users through a secure environment. The safer the environment of the data 

analyst, in general the less noise will be needed, and likewise the level of noise could be 

tailored to the sensitivity of the data. 
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Appendix. Model estimation with random noise or measurement 
errors. 
 

The following exposition, as introduced in section 6, is for a single level linear model with a 

single predictor variable that contains noise (measurement error) with known parameters. The 

case of several predictors with added noise, the case where we have a generalised linear 

model and the multilevel case follow straightforwardly. We assume multivariate normality 

for the added noise and where we have categorical or count variables or continuous variables 

for which a normalising transformation exists (Goldstein et al., 2009), then the appropriate 

extra steps are inserted into the MCMC algorithm to enable a random draw from underlying 

normal distributions. The following estimation steps are based upon those described by 

Goldstein et al. (2016). 

 

Define the true values of the variable with measurement error (noise) as 𝑋1 and those without 

measurement error as 𝑋2, and 𝑋 = [𝑋1 𝑋2]. 

Define the joint model - the measurement error model (MEM) in two parts, (1a) and (1b) and 

the model of interest (MOI) (1c) – see derivation below: 

𝑥1 = 𝑋1 + 𝛾1                                                   (A1a) 

𝑋1 = 𝑋2
𝑇𝛼 + 𝛾2                                                (A1b) 

𝑌 = 𝑋𝛽 + 𝑒                                                  (A1c) 

where 𝛾1~𝑁(0, 𝜎_𝛾1
2 ),    𝛾2~𝑁(0, 𝜎_𝛾2

2 ),   𝑒~𝑁(0, 𝜎𝑒
2). We note that the MOI (A1c) may 

contain functions of the  𝑋1, such as interaction or power terms.  Lower case variables define 

observed and upper case true values, and we assume the residual terms in (A1a)-(A1c) are 

independent. A Metropolis step is used for record 𝑖, where a current value is proposed. If we 

denote this by 𝑋1𝑖, the joint log likelihood for (A1a), (A1b) and (A1c) is 

−{1.5𝑙𝑜𝑔2𝜋 + log(σ𝛾1
σ𝛾2

𝜎𝑒) +   
0.5(𝑥1𝑖−𝑋1𝑖)2

σ𝛾1
2 +

0.5(𝑋1𝑖
𝑇 −𝑋2𝑖

𝑇 𝛼)
2

σ𝛾2
2 +

0.5(𝑦�̃�)2

𝜎𝑒
2  }                (A2) 

where 𝑦�̃� = 𝑦𝑖 − 𝑋𝑖𝛽  and only the final three terms in (A2) are required in the Metropolis 

step. 

 

For a proposal distribution we can use 

  𝑝(𝑋1|𝑥1)~𝑁(𝑥1𝑅, 𝑅(1 − 𝑅)𝜎𝑥1
2 )                             (A3) 

where R is the reliability =
𝑣𝑎𝑟(𝑋1)

𝑣𝑎𝑟(𝑥1)
.  Model (A1)  is similar to the formulation by Richardson 

and Gilks (1993) where they have a ‘gold standard’ validation sample that provides the 

information contained in (A1a). In the present case, of course, the values of the noise 

variances are known to the data analyst. 

 

For the case where we have > 1 variables with measurement error we can propose the set of 

values defined independently for each variable  or look at the joint proposal distribution in 

the case where correlated noise has been used, namely 𝑓(𝑋1|𝑥1)~𝑀𝑉𝑁(𝑋1Ω𝑥1
−1Ω𝑋1

, Ω𝑋1
−

Ω𝑋1
Ω𝑥1

−1Ω𝑋1
) , although the use of correlated noise, generally would seem to be unnecessary 

and serves only to complicate the analysis. Further details can be found in Goldstein, Browne 

and Charlton (2017). 
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For discrete variables where we have misclassification errors, there is an analogous procedure 

(Goldstein and Browne, 2016), but this becomes complicated when there are multiple 

categories. Instead we apply the procedure given by (A3) as follows. 

 

For the discrete variables in 𝑋1 in (A1a), we now have the set of category codes (0,…,p-1), as 

discussed in Section 5. Associated with such a variable we will have p-1 dummy variables 

𝐷1. The proposal distribution for the Metropolis step is conveniently chosen as the observed 

distribution across the categories, based on choosing the nearest integer, or alternatively the 

‘true’ distribution could be made available by the data provider for use as the proposal 

distribution. The log-likelihood contribution is then given by one of the following depending 

on the observed value  𝑚𝑖𝑗 

−{0.5𝑙𝑜𝑔2𝜋 + log(σ𝑚) +    
0.5(𝑚𝑖𝑗−𝑗∗)

2

σ𝑚
2 }   if 0 < 𝑚𝑖𝑗 < 𝑝 − 1 

log(∫ 𝜙(𝑓)𝑑𝑓),     𝑓~𝑁(𝑗∗, σ𝑚
2 )

0

−∞
  if  𝑚𝑖𝑗 ≤ 0 

log(∫ 𝜙(𝑓)𝑑𝑓),     𝑓~𝑁(𝑗∗, σ𝑚
2 )

∞

𝑝−1
  if  𝑚𝑖𝑗 ≥ 𝑝 − 1 

 

where j* is the proposed value and 𝑚𝑖𝑗 is the observed ‘noisy’ value truncated at zero and 

𝑝 − 1.  

 

In some cases we may wish to present perturbed categorical data to a data analyst only as a 

set of discrete values, for example as the nearest integer to the ‘noisy’ value. Thus, for 

example for a perturbed value in the range (−∞, 1.5) we would report the value as 1 and 

generally as j if it is in the interval (𝑗 − 0.5, 𝑗 + 0.5). For the likelihood contribution for a 

proposed value 𝑗∗  we now have the likelihood contributions 

∫ 𝜙(𝑓)𝑑𝑓
0.5

−∞
   if  𝑚𝑖𝑗 = 0 

∫ 𝜙(𝑓)𝑑𝑓
𝑚𝑖𝑗+0.5

𝑚𝑖𝑗−0.5
   if   0 < 𝑚𝑖𝑗 < 𝑝 − 1 

∫ 𝜙(𝑓)𝑑𝑓
∞

𝑝−1.5
   if    𝑚𝑖𝑗 = 𝑝 − 1 

 

For each proposed category for variable 𝑋1 we will have a corresponding entry of ‘1’ for the 

dummy variable in the model of interest, i.e. in  𝐷1. This set of dummy variables will enter 

the MOI as predictors with the response vector corresponding to (A1b), where the default 

link function is the multivariate probit as described in Goldstein et al. (2009). If we wish to 

allow actual measurement errors for continuous predictors as well as the imposed 

anonymization categorical measurement errors, it will be convenient to propose true values 

for the former in a separate step, conditional on all the current categorical predictor values. 

Where we have imposed anonymization measurement errors for continuous variables as well 

as actual measurement errors, we may simply add the variances for the former to the 

corresponding diagonal terms of the actual measurement error covariance matrix. 

Standard errors as quoted in the tables are the standard deviations computed from the MCMC 

chains in the usual way. 

 

As mentioned in Section 6, in some cases we may have additional constraints on the data 

values. For example, if the perturbed value 𝑥1 is constrained to be no larger than a chosen 

value, we may have 
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𝑖𝑓(𝑥1 > 𝐶1), 𝑠𝑒𝑡 𝑥1 = 𝐶1  

where the value 𝐶1 does not occur in the dataset.  Then, whenever 𝑥1 = 𝐶1, we would sample 

a value from the upper tail of the normal distribution defined by the current values from 

(A1b) and use this in the Metropolis step. Likewise, where we apply truncation to a 

continuous response variable, an extra step will be introduced into the algorithm that samples 

from the tail area of the normal distribution conditional on current parameter values. A 

similar procedure could be used more generally where a grouping of values takes place. Care 

will be needed, however, to ensure that there is not too much loss of efficiency associated 

with this. 

 

For a response variable with added noise, the situation is more complex but for normally 

distributed responses we can carry out an analysis using the observed values to obtain 

consistent estimates of the fixed coefficients. We can obtain a consistent estimate for the 

residual variance by using the observed variance during the chain sampling and  subtracting 

the (known) variance for the measurement error in the response, say 𝜎𝛿
2, from the final 

estimated residual variance.  As we show in our example this may result in a large increase in 

the standard errors when the measurement error variance is large relative to the residual 

variance. When data are released it may be acceptable to provide any variable(s) to be treated 

as a response with the true values or just a small amount of noise, and as we show in our 

example in Section 9, this may not be too disclosive. 

 

For categorical responses with misclassification or measurement errors a further modification 

is required. Thus, for example, in the case of a binary response where normally distributed 

noise has been added as in (3), if we choose, as above, to round the observed value to the 

nearest integer (0,1), denoted by 𝑦𝑖, then for the likelihood for the model of interest we can 

write 

𝛿1 = Pr(𝑜𝑏𝑠 = 1|𝑡𝑟𝑢𝑒 = 0) = ∫ 𝜙
𝛿
(𝑡)𝑑𝑡)     

∞

0.5
,   Pr(𝑜𝑏𝑠 = 1|𝑡𝑟𝑢𝑒 = 1) = 1 − ∫ 𝜙

𝛿
(𝑡)𝑑𝑡)     

∞

0.5
  

 and this leads to 

Pr(𝑦𝑖 = 1|𝑋𝛽) = 𝛿1 + (1 − 2𝛿1) ∫ 𝜙(𝑡)𝑑𝑡,   𝜙𝛿~𝑁(0, 𝜎𝛿
2)

∞

−𝑋𝛽
                                     (A4) 

Thus for the 𝛽 parameters, since 𝜎𝛿
2 is known, we will have a Metropolis step for each one in 

turn using the observed (0,1) values, subject to  𝛿1 + (1 − 2𝛿1) ∫ 𝜙(𝑡)𝑑𝑡
∞

−𝑋𝛽
< 1.   

 

Routines to implement the models described in this appendix have been written in MATLAB 

(2017) and details can be obtained from the first author. 


