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ABSTRACT 

In 2013, Gymrek et al. reported that personal genomes can be re-identified through surname 

inference using patrilineal information inherent in the Y chromosome.  They highlighted that 

the attack is based on freely available resources. This finding has raised significant concerns 

about the privacy of participants in genomic studies and genomic privacy in general. 

However, the findings are much less clear cut than the high profile nature of the paper might 

suggest and the experiments reported in the paper are somewhat ad hoc. Therefore, a more 

thorough analysis of the risk of privacy breaches of genomic data through surname inference 

is desirable. The current paper analyses this risk in the British population.  

Our work demonstrates: (i) that although re-identifying personal genomes by surname 

inference attack is possible, the risk is relatively low in the population of Britain and crucially 

dependent on the scale of external resources used to perform the attack; (ii) that many 

different factors influence the risk and so the risk of re-identifying genomic data via this route 

is specific to each genomic dataset and hence the risk should be assessed for every dataset 

individually and (iii) that attaching geo-demographic metadata to genomic data could greatly 

facilitate re-identification and so we advise that caution should be adopted with such 

attachments. 
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1 BACKGROUND 

Human cell nuclei contain two sex chromosomes termed X and Y. Typically, there are two X-

chromosomes in each cell of a female (XX), while male cells include a copy of one of their 

maternal X-chromosomes and the paternal Y-chromosome (XY). Y chromosomes are 

therefore necessarily passed from father to son. As a result the Y chromosome can be used to 

track paternal lineages [1].  

This does not mean that the Y chromosome is unchanging. Sex cells (sperm and eggs) 

undergo a form of DNA replication called meiosis. Occasionally, errors can occur during 

meiosis which will change the form of the Y chromosome passed from father to son. Such 

errors can take a number of forms. For example, a single base can be changed in a Single 

Nucleotide Polymorphism (SNPs). These errors are relatively infrequent and are therefore 

useful for tracking changes that occur over long periods of time, for example in historical 

studies of the migration of human populations [2]. A second form of error can be observed in 

regions of the chromosome that contain short repetitive regions known as Short Tandem 

Repeats (STRs
2
). In particular, the number of repeats in any given STR can change. Y-

chromosomal Short Tandem Repeats (Y-STRs) are the most changeable parts of the Y 

chromosome and the most likely to differ between generations. This rate of change has been 

studied for father/son pairs [3] and pedigrees [4]. This high rate of changeability means Y-

STRs can be useful in distinguishing between more recent male lines [5]. The Y chromosome 

therefore provides an insight into male inheritance patterns and serves as a link to other data 

that might also correlate with patrilineal inheritance. 

From the Mediaeval period, in Britain and elsewhere, the addition of the surname to the given 

names of individuals became common practice. In most societies, surnames are passed from 

the father to the child.  This means that – for male offspring – surnames are usually inherited 

in parallel with the Y-chromosome and so a culturally inherited feature (surname) is 

correlated with a genetically inherited element (the Y chromosome) [6, 7]. This leads to the 

possibility that the Y chromosome of an individual can be used to infer that individual’s 

surname. This has clear implications for privacy. 
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Several studies have looked at the degree of the association between surnames and Y-

chromosome sequence variation. In 2000, Sykes and Irven [8] investigated the association 

between Y-chromosome haplotype
3
 and surname for a sample of males sharing the same 

surname “Sykes”. They demonstrated that Sykes males with the same ancestry shared the 

same Y-chromosome haplotype, and it was reported that there was a significant association 

between whether males had the surname “Sykes” or not and distribution of the Y-

chromosome haplotypes. King and Jobling [9] analysed Y-chromosomal pattern diversity 

within 40 British surnames using 1,678 samples. Their analysis illustrated a strong 

relationship between surnames and Y-chromosome haplotypes. This correlation could have 

many applications in genealogy and forensics [5]. In genealogy in particular, it has sparked 

interest in the potential of genetic genealogy for enriched understanding of the family trees 

and origins. As sequencing technologies improve and their costs reduce, the use of Y-

chromosome sequencing for these secondary purposes becomes more viable and has 

triggered the establishment of several databases (and associated project websites) containing 

Y-STR haplotypes and associated surnames [10]. This in turn has led some researchers to 

explore whether it is possible to use such genealogical data resources as a tool for 

determining the identity of unidentified Y chromosome sequence data.  

In 2013, Gymrek et al. [11] presented a study that shows that databases that include Y-

chromosome haplotypes and the associated surnames pose a threat to the confidentiality of 

personal genomic data. They demonstrated that they could recover surnames associated with 

personal genomes by profiling their Y-STR haplotypes and querying genealogical databases
4
. 

They then showed that combining a surname with other demographic data could lead to re-

identification of the target genome leading to heightened concerns about genomic privacy. 

However, as we argue in this paper, the findings are less clear cut than the high profile nature 

of the paper might suggest and so it is crucial at this point to conduct more general analyses 

of the real risk of privacy breaches through surname inference.  

1.1 Identifying Personal Genomes by Surname Inference 

In 2008, Lunshof et al. [12] introduced the idea that a combination of surnames, genotypes 

and geographical information is a threat to privacy. Gitschier [7] pursued this idea 
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experimentally by examining 30 unrelated CEU
5
 participants in the HapMap project and 

reported that the detection of the potential surnames was possible. Nevertheless, these 

potential surnames correspond to multiple individuals and the study did not itself lead to re-

identification of genomics data at the individual level. In 2013, Gymrek et al. [11] followed 

this to simulate an actual re-identification of personal genome data, which they refer to as 

end-to-end re-identification. They demonstrated that it was possible to recover surnames 

from personal genomes by profiling Y-STRs and using genetic genealogy databases and that 

the target could then be re-identified by combining the surname with other types of 

information, such as age and state of residency. 

To recover surnames, Y-STR haplotypes are first required. Gymrek et al. [11] used lobSTR 

which is an algorithm to profile STRs from raw sequencing reads and produce Y-STR 

haplotypes. They then used Ysearch (www.ysearch.org) and SMGF (www.smgf.org)
6
, as 

their primary resources to underpin surname inference. These databases have built-in search 

engines which allow users to query with Y-chromosome STR haplotypes and search for 

possible matching records based on genetic similarity. These search engines usually retrieve 

matching surnames with some information related to the paternal line, like pedigrees and 

geographical locations. The two datasets included about 135,000 records with approximately 

39,000 surnames between them and Gymrek et al. [11] claimed that they are representative of 

the distribution of surname frequencies in the United States
7
.  

A brief description of Gymrek et al.’s algorithm for inferring the surname of a given Y-STR 

haplotype follows: First, the database record that has the shortest number of generations to 

most recent common ancestor is retrieved.  Then, a confidence score, generated through 

comparison with other possible matches, is calculated and compared with a pre-defined 

threshold. If the score passes the threshold, the recovered surname will be assigned to the 

input haplotype, otherwise the input haplotype will be categorised as “unknown”. 

The recovered surnames are then combined with demographic data and, in one experiment, 

pedigree information to perform the end-to-end re-identification. This type of auxiliary data 

is associated with the genomic data in the Coriell Cell repository where the 1000 genome 
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project database is housed and so this is a reasonable scenario to be exploring.  Gymrek et al. 

[11] actually report two slightly different experiments one which uses surname, year of birth 

and state of residence (where the target is particular individuals) and the other which adds in 

pedigree (where the target is entire extended families).  

To protect any information against possible privacy threats, systematic analysis and 

evaluation of plausible attacks is necessary. Based on such a risk assessment, we can better 

understand and manage the attacks. Thus, in this paper we carry out a more extensive 

analysis of the risk of re-identifying personal genomes and breaching privacy of genomic 

data by surname inference in a British context. The contribution of the paper can be 

summarised as follows: 

1. Based on a model of the distribution of surname frequencies, we quantify the 

probability of recovering the surname associated with a genome. By recover we mean 

correctly linking a surname with a genome.  

2. We then quantify the risk of re-identification of a personal genome using surname 

inference attack. 

3. We then analyse the impact on the risk of re-identification of combining surnames 

with metadata on age and location.   

Note that in the later simulations the data we use is for England and Wales only; for the sake 

of brevity we will refer to this by its (now somewhat archaic) name of “Britain” [13]. 

2 METHOD 

2.1 Intruder Model 

To analyse attack scenarios and perform a disclosure risk assessment, after understanding the 

key characteristics and main uses of the data, we need to define the situations in which a 

disclosure might occur [14]. In this paper, we first consider a scenario where an intruder 

holds a (single) de-identified personal genome and aims to re-identify that genome via 

surname inference. For such an attack, the intruder first needs to profile STRs from the 

genome and produce Y-STR haplotypes. We assume that either the intruder has the genomic 

knowledge required for this purpose or the genomic data he holds is in the form of Y-

chromosome haplotypes. We also assume that the intruder has access to the required 

resources including a database of linked surnames and Y-STR haplotypes and also has the 



necessary expert knowledge and bioinformatics tools needed to recover the matched surname 

𝑆. Finally we make three simplifying assumptions. The first is that an intruder with a 

sufficiently compelling motivation to carry out such an attack exists, the second is that that 

the payload of such an attack is unrelated to its probability and the third is that there is no 

data divergence [14] present which hampers any of the linkages
8
. These simplifying 

assumptions allow us to treat the risk a successful attack and the probability that an attack 

will be successful as being synonymous and make the calculations tractable. This type of 

simplifying assumption is standard in disclosure control research; the net effect is to produce 

an upper bound on the risk. 

We then expand this scenario and assume that the intruder has access to a genomic database 

including 𝑚 personal genomes and he intends to re-identify at least one of the genomes via 

surname inference. It should be noted that in this work we will always be considering male 

genomic data as the attack necessarily uses patrilineages. 

2.2 The Probability of Surname Inference 

To model this attack, we assume that the intruder has access to a database 𝐷 of 𝑛 surname-Y-

STR haplotype pairs sampled randomly from the male population of Britain including 𝑁 

people. We refer to this database as the external genealogical database. He also holds a de-

identified personal genome 𝐺 (known as target genome) selected randomly from the whole 

population. For an intruder to be able to recover the surname using the external genealogical 

database, at least one male whose surname is 𝑆 should be in that database. Therefore, the 

probability of the surname 𝑆 being recovered for 𝐺 can be estimated as the probability of 

having at least one of the 𝐹𝑆 males with surname 𝑆 from the male population in the external 

genealogical database:  

𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑆) = 𝑃(∃𝑆 ∈ 𝐷) = 1 − 𝑃(∄𝑆 ∈ 𝐷) = 1 −
(𝑁−𝐹𝑆

𝑛
)

(𝑁
𝑛

)
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To expand the scenario, we assume that the intruder has access to a genomic database 𝐺𝐷 of 

𝑚 de-identified personal genomes (refered to as target genomic database). We assume that 

each personal genome 𝐺𝑖 has a surname 𝑆𝑖 and that GD is a simple random sample of the 

population. The intruder also holds an external genealogical database 𝐷 including 𝑛 surname-

Y-STR haplotype pairs sampled randomly from the male population of Britain. The 

probability of the intruder to be able to recover at least one of the 𝑚 personal genomes can be 

computed as: 

𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑆) = 1 − 𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑛𝑜 𝑆) = 1 − ∏ (
(𝑁−𝐹𝑠𝑖

𝑛
)

(𝑁
𝑛

)
)

𝑚

𝑖=1

 

2.3 The Impact of Surname Inference on Re-Identification Risk 

Since the number of males who share a given surname can vary significantly depending on 

the popularity of the surname, the recovery of a surname also varies in terms of its impact on 

the risk of re-identification. For instance, correctly associating a de-identified genome with 

the surname “Smith” (which occurs over 600,000 times in the UK population) is very 

different from associating the surname “Austin” or “Rubaduka” (whose occurrences are 

approximately 28,000 and 10 in the UK population, respectively) [15].  The rarer the surname 

is in the population, the bigger the impact of its inference is on the probability of re-

identification. We can express this quite simply; the impact of inferring surname 𝑆, which 

occurs 𝐹𝑠 times in the population is: 

𝐼(𝑆) =
1

𝐹𝑠
 

Therefore, the probability of re-identifying a single de-identified male genome via surname 

inference can be estimated as follows
9
: 

𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝐺) = 𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑆) × 𝐼(𝑆) = (1 −
(𝑁−𝐹𝑠

𝑛
)

(𝑁
𝑛

)
) ×

1

𝐹𝑠
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If the intruder has access to a target genomic database 𝐺𝐷 of 𝑚 de-identified personal 

genomes, rather than a single genome, then the probability of re-identifying at least one of the 

genomes in the genomic database via surname inference can be calculated as: 

𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝐺|𝐺𝐷)  = 1 − 𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜 𝐺)

= 1 − ∏ 𝑃(𝑛𝑜𝑡 𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑖𝑛𝑔 𝐺𝑖)

𝑚

𝑖=1

= 1 − ∏(1 − 𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝐺𝑖)

𝑚

𝑖=1

= 1 − ∏(1 − (1 −
(𝑁−𝐹𝑠𝑖

  

𝑛
)

(𝑁
𝑛

)
) ×

1

𝐹𝑠𝑖

)

𝑚

𝑖=1

 

2.4 Modelling Frequencies Distribution of Surnames 

In order to assess the surname inference attack and the impact of surname inference on the 

risk of re-identification, we need to model the distribution of the surname frequencies in the 

population. In the literature, some studies explore the distribution of surname frequencies and 

a review of these can be found in [16]. For instance, Fox and Lasker [17] demonstrate that the 

distribution of surname frequencies in the UK population follows a Discrete Pareto 

Distribution which means that the number of surnames occurring 𝑡 times in the population is 

proportional to 𝑡−𝛽, where 𝛽 is a positive constant. Thus, the number of surnames which 

occurs 𝑡 times in the population can be modelled by: 

𝐹(𝑡) = 𝛼. 𝑡−𝛽 

where 𝛼 is a constant and the 𝑓(𝑡) sum to 1. 

This shows that the distribution of surname frequencies follows a simple linear regression 

model on logarithmic scale.  The dataset used in these experiments is a publicly available one 

from [18]. It comprises the 250 most common surnames in Britain, published by National 

Statistics 2002, which have frequencies between 27,000 and 660,000 the UK population. 

This data was fitted to a 2nd
 order polynomial where R

2 
= 0.9991: 

 

𝑦 = −0.142 ∗ 𝑥2 − 0.162 ∗ 𝑥 + 5.639 

where, 



𝑥 = 𝑙𝑜𝑔(𝑟𝑎𝑛𝑘𝑠) 

𝑦 = 𝑙𝑜𝑔(𝐹𝑠) 

𝑟𝑎𝑛𝑘𝑠: 𝑠𝑢𝑟𝑛𝑎𝑚𝑒′𝑠 𝑟𝑎𝑛𝑘 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐹𝑠: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑢𝑟𝑛𝑎𝑚𝑒 𝑆 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

3 RESULTS 

In this section, we first evaluate the effectiveness of a surname attack and then given the 

impact of surname inference on the risk of re-identification, we assess the overall risk.  

3.1 Part 1: Genomic Information Only 

3.1.1 Surname Inference Attack (Given an Intruder with a Single Genome) 

In the first model, we used the model of the distribution of surname frequencies described in 

section 2.4 and estimated the probability of surname inference given an external genealogical 

dataset of 𝑛 surname-Y-chromosome haplotypes as described earlier. The results presented 

use a range of external database sizes from 1,000 to 500,000. Figure 1 shows the probability 

of recovering surname 𝑆 with rank 𝑟 given the model of surname frequencies distribution and 

different external genealogical databases. 

Figure 1 shows that the probability of recovering a surname decreases markedly as the rank 

of surname in the population increases. It is also clear that we are likely to be able to infer a 

common surname even when the sample database includes as few as 1,000 entities
10

. We also 

see that the probability of recovering a particular surname being recovered is higher for 

bigger external genealogical databases. 

3.1.2 Estimation of Risk of Re-Identification  

However, the full re-identification risk must also consider the number of people with a 

particular surname. Specifically, we used the distribution model to compute the number of 

the male with surname 𝑆 and rank 𝑟 in the whole population and then compute the risk 

𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝐺). Similar to the above experiment, we modelled four genealogical 
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databases of different sizes to explore the effect of its size on the risk. Figure 2 shows the 

overall risk of re-identifying a genome associated with an individual with surname 𝑆 and rank 

𝑟 using the genealogical databases of the four sizes. 

 

Figure 1- Probability of recovering surname 𝑺 with rank 𝒓 

We use external genealogical databases of surname-Y-chromosome haplotypes of different sizes ranging from 1,000 

to 500,000. 

 

Figure 2- Overall risk of re-identifying a genome associated with an individual with surname 𝑺 and rank 𝒓 

We use four external genealogical databases with different sizes 𝒏 from 1,000 to 500,000. 

Figure 2 shows that the overall risk of re-identification increases as the surname’s rank rises 

and the number of males with that surname decreases. This illustrates three things:  
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1. That the overall risk of re-identification is higher for surnames which are rarer even 

though they are less likely to be recovered in the first step. Conversely, the overall 

risk is quite low for common surnames even though the probability of recovering 

them is high.  

2. That the overall risk of re-identifying a genome associated with surname 𝑆 increases 

as the external genealogical database grows. It indicates that the risk of re-identifying 

common surnames is very low even for big 𝑛 whereas the risk of re-identification of 

rare surnames increases as 𝑛 grows.  

3. That the maximum risk of re-identification is less than 0.5*10
-4

 when n=1,000 where 

the maximum risk increases to approximately 0.0168 when 𝑛 rises to 500,000 

samples. 

3.1.3 Surname Inference Attack (Given an Intruder with a Target Genomic 

Database of 𝒎 Records) 

For this scenario we first generated a target genomic database of 𝑚 samples selected 

randomly from the whole population with the distribution of surname frequencies as 

described before. Then having the genomic database, we used the above model to quantify 

the probability that an intruder would recover the surname associated with at least one of the 

genomes in the genomic database given a genealogical dataset. The external genealogical 

database includes 𝑛 surname-Y-chromosome haplotypes sampled randomly from the British 

population. We performed the simulation using simulated target genomic databases with a 

range of different sizes and external genealogical databases of four sizes. As above we then 

considered the re-identification risk given the number of people expected to share that 

surname.  

Figure 3 shows the mean risk of at least one re-identification associated with a target genomic 

dataset of size 𝑚, given four genealogical datasets including different number of samples. As 

Figure 3 shows, the overall risk of re-identification increases linearly as the size of genomic 

database (𝑚) grows, but stays low when the external genealogical database includes a few 

number of samples n=1,000. The risk however increases markedly as  𝑛 grows (as expected). 

 

 



 

Figure 3- Mean risk of re-identifying at least one of the genomes in the target genomic database of size 𝒎 

We use an external genealogical dataset including 𝒏 surname-Y-STR haplotypes pairs of four sizes from ranging 

from n= 1,000 to 500,000. 

3.2 Part 2: Target Genomic Database of 𝒎 Records with Attached Auxiliary 

Information 

Based on comprehensive simulations with the US census data, Gymrek et al. [11] 

demonstrate that searching for individuals using the combination of surname, state of 

residency and year of birth using online resources produced median cross classified 

frequencies of twelve male records. Therefore, they conclude, such a combination will 

generate sufficiently few matches that manual investigation is feasible.  

Here we simulate this ad hoc study, at scale, with the British population. Barrai et al. [19] 

show that the US population is highly mobile, people from different origins are spread over 

the entire area of the US. In contrast, in Great Britain, Anglo-Saxon surnames are often 

spatially concentrated in the areas where they first became popular [20]. Cheshire et al. [21] 

demonstrate that in Great Britain there is a strong association between surname distribution 

and geographical locations and mobility is not as strong a phenomenon in this population. It 

is therefore a meaningful exercise to make probabilistic inferences about an individual’s 

location of residence from their surname, which is potentially useful to an intruder trying to 

track somebody whilst being only in possession of their genome. On the other hand, adding 

the individual’s location of residence (at least at the coarse geographical scale that Gymrek et 

al. use) is likely to be generally less informative to an intruder than in the US case. However, 
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if an individual’s region of residence is not one where people of that surname are 

concentrated, then a high differentiation of the individual from the rest of the population is 

provided which may increase the risk of re-identification significantly for such individuals. 

This is what Elliot and Dale [14] refer to as the risk impact of multivariate skew.  

To comprehend the effect of combining geographical region and age – the two additional 

pieces of information that Gymrek et al. used for an end-to-end re-identification of a genome 

– with surnames on the overall risk of re-identification of a de-identified genome in a British 

context, we performed three experiments that will be discussed in the following sections. 

3.2.1 Effect of Attaching Geographical Regions to Genomes on the Overall Risk 

of Re-Identification 

The rarer a surname is in a geographical region, the bigger is the impact of attaching this 

auxiliary information to genomes on the overall risk of re-identification of a genome via 

surname inference. We simply express the impact as following: 

𝐼(𝑆|𝐺𝑂𝑅) =
1

𝐹𝑆,𝐺𝑂𝑅
 

where 𝐹𝑆,𝐺𝑂𝑅 represents the frequency of males with surname 𝑆 in government office region 

𝐺𝑂𝑅 (a close approximation, in terms of average size of population, to the state of residence 

geography used by Gymrek et al). 

Therefore, the overall probability of re-identifying a single de-identified genome, via 

surname inference, given its associated geographical region can be quantified as following: 

𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝐺, 𝐺𝑂𝑅) = 𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑆) × 𝐼(𝑆|𝐺𝑂𝑅) = (1 −
(𝑁−𝐹𝑆

𝑛
)

(𝑁
𝑛

)
) ×

1

𝐹𝑆,𝐺𝑂𝑅
 

where 𝑁 is the total number of males in the population of Britain, 𝑛 is the number of 

surname-Y-STR haplotype pairs in the external genealogical database and 𝐹𝑆 is the number of 

males with surname 𝑆 in the population.  

In this experiment, we selected ten arbitrary common surnames from the British male 

population (from Smith with rank 1 to Heywood with rank 990) [18] and obtained their 



frequency distribution in ten different geographical regions of Britain
11

. We then estimated 

the overall risk of re-identifying a genome related to each of the above surnames for different 

GORs. We performed the same experiment simulating external genealogical databases of 

eight different sizes (n) ranging from 1,000 to 1,000,000. Figure 4 illustrates this when 

n=1,000 and n=20,000, showing that the mean risk increases as the surname’s rank in the 

population rises, emphasising that the rarer a surname is, the higher is the overall risk of re-

identification. However, the mean risk is relatively low when 𝑛 is small (less than 0.5×10
-3

). 

It also shows that the mean of the overall risk increases as 𝑛 becomes larger. It can also be 

seen that increasing 𝑛 has more impact on the overall risk of re-identification of genomes 

associated with rarer surnames compared to the very common ones.  

To demonstrate the impact of knowing a genome’s geographical region on the overall risk of 

re-identifying that genome via surname inference, Figure 5 shows the overall risk of re-

identifying a genome with no additional information (only based on surnames) and the mean 

risk of re-identifying a genome associated to surname 𝑆 with rank 𝑟, given the geographical 

information. We used an external genealogical dataset with 1,000 samples, and the ten 

surnames that we had their frequency distributions in different geographical regions. 

As Figure 5 shows, the mean risk of re-identifying a genome via surname inference increases 

markedly when geographical information is attached to the genome. For instance, the risk of 

re-identifying a genome which is related to a male named “Heywood” with rank 990 in the 

population is about 3.4×10
-5

 when n=1,000 and no geographical information is attached, 

whereas the mean risk increases to 5.5×10
-4 

if we add geographical information – more than 

16 times bigger. Figure 5 also illustrates that adding geographical information has more 

impact on the risk of re-identification of genomes related to rarer surnames in comparison 

with the more common ones. 
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 This data was provided by Paul Langley from the UCL Centre for Advanced Spatial Analysis. Led by Paul 

Langley and Richard Webber, researchers in this centre study the distribution of surnames in the UK and have 

launched an online tool to map surname concentration by county. 



 

Figure 4- Mean risk of re-identifying a genome related to each surname knowing the geographical region associated 

with the genome 

We use two external genealogical datasets with sizes n=1,000 and n=20,000. 

 

Figure 5- The impact of adding geographical information to the target genome 𝑮 associated to surname 𝑺 with rank 𝒓 

on the risk of re-identification  

We use an external genealogical dataset with n=1,000. 
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3.2.2 The Effect of Attaching Geographical Regions and Age to Genomes on the 

Overall Risk of Re-Identification 

Attaching age information to genomes has a slightly different impact on the overall risk of re-

identification as attaching geographical information. In principle, the rarer a surname is in a 

particular age range, the more impact it has on the overall risk. However, it is unlikely that 

the relationship is as strong as with GOR. Any effects would arise from differential fertility 

rates by surname and differential migration patterns.   Unfortunately we could not obtain data 

for the distribution of surname dependent upon age. To simplify this whilst still allowing us 

to take into account the differentiating effect of age on risk we treat the distribution of 

surname by age as uniform. Given this assumption, the impact of attaching age to genomes, 

given that the geographical information is also attached, is indicated by the following 

function: 

𝐼(𝑆|𝐺𝑂𝑅, 𝐴𝐺𝐸) =
1

𝐹𝑆,𝐺𝑂𝑅
×

1

𝐹𝐺𝑂𝑅,𝐴𝐺𝐸
 

where 𝐹𝑆,𝐺𝑂𝑅, represents the frequency of males with surname S in geographical region 𝐺𝑂𝑅 

and 𝐹𝐺𝑂𝑅,𝐴𝐺𝐸 represents the frequency of males in GOR who have age = 𝐴𝐺𝐸. 

Therefore, we can quantify the probability of re-identifying a single de-identified genome, via 

surname inference, given its associated geographical region and age as following: 

𝑃(𝑟𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝐺, 𝐺𝑂𝑅, 𝐴𝐺𝐸) = 𝑃(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑆) × 𝐼(𝑆|𝐺𝑂𝑅, 𝐴𝐺𝐸)

= (1 −
(𝑁−𝐹𝑆

𝑛
)

(𝑁
𝑛

)
) ×

1

𝐹𝑆,𝐺𝑂𝑅
×

1

𝐹𝐺𝑂𝑅,𝐴𝐺𝐸
 

where 𝑁 is the total number of males in the population of Britain, 𝑛 is the number of 

surname-Y-STR haplotype pairs in the external genealogical database and 𝐹𝑆 is the number of 

people with surname 𝑆 in the population.  

In the following experiment, the dataset used for the age frequency distribution in different 

geographical regions, is a publicly available one from [22]. It includes the number of males 

and females in different age groups in ten geographical regions in Britain obtained from 

census 2001, published by office for National Statistics. In this dataset, the data is provided 

for every single age from 0 to 24, then for every age group of 5 years from [25-29] to [85-

89], plus 90 and over as the last group. In order to simulate the effects of knowing a subject 



age to within a year we assumed that the age profiles were equally split across the 5 year age 

ranges (i.e. we assumed that the number of people aged 33 could be estimated as a 1/5 of the 

all people aged between 30 and 34)
12

. From this we could then calculate the risk of re-

identification as a function of surname for various external genealogical database sizes when 

we add age and geographical region data. Figure 6 shows the mean risk of re-identifying a 

genome related to a male with surname “Smith” or “Heywood” located in each geographical 

location knowing the age (in the form of year) associated with the genome, when 𝑛 is equal 

to 1,000 or 20,000. Note that these means mask variation in risk and in such cases the 

maximum risk tends to 1. That is there will be some combinations of age, region and surname 

which are unique in the population. 

 

Figure 6- Mean risk of re-identifying a genome related to a male with surnames “SMITH” and “HEYWOOD” 

located in each geographical location knowing the age in years associated with the genome 

We use two external genealogical datasets with sizes n=1,000 and n=20,000. 

Figure 6 shows that adding age data to the target genome as well as geographical information 

increases the mean risk of re-identification considerably. For instance, the mean risk of re-

identification of a genome related to surname “Heywood” increases from approximately 

0.0005 to 0.2 (400 times bigger) when we add age and geographical region data to the 
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 This is obviously a simplifying assumption but is a close enough approximation to the underlying distribution 

for our current purposes. The post 100 population is excluded here and for males this tapers off very fast so 

much so that it is fair to assume that exact age plus region plus surname will be unique pretty much all the time. 
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genome (where n=1,000). Similar to Figure 5, Figure 6 shows that increasing the size of the 

external genealogical database 𝑛 increases the mean risk of re-identification of rarer 

surnames more noticeably than the common ones. It can also be seen in Figure 6, that some 

combinations of age, geographical region, and surname which are very likely to be identified 

in the population. We also performed the same experiment using larger external genealogical 

databases and our results demonstrated that for n>20,000 the mean risk is similar (within a 

few percentage points).  

4 DISCUSSION 

In this paper, we have systematically analysed the risk of an intruder being able to re-identify 

a male genome within the British population using a surname attack. The headline results are 

that the probability of an intruder being able to re-identify a single genome with no auxiliary 

information attached is low even utilising genealogical resources larger in scale than those 

currently available. With an intruder who has obtained access to a de-identified genomic 

database, the risk of them being able to correctly re-identify at least one of the genomes in the 

database increases significantly as the size of the genealogical resource and the de-identified 

genomic database increase.  If auxiliary information is attached to the genome then the risk 

also increases markedly. On the numbers given here the risk can be said to exceed the 

principal of negligibility [23] and therefore such data would be classified as personal data. 

However, the interpretation of those numbers is dependent on the assumptions that we have 

made in constructing the intruder models. We will now examine those assumptions. 

1. Knowledge assumption.  We assumed that either the intruder has the genomic 

knowledge (or the genomic data he holds is in the form of Y-chromosome haplotypes) 

and necessary expert knowledge and bioinformatics tools needed to recover the 

matched surname. 

To recover surnames, the intruder must have access to the target Y-STR haplotypes. 

This means that the intruder should either (i) have a good knowledge of genomics to 

be able to profile STRs from raw sequencing reads and to be able to produce the Y-

STR haplotypes and also has access to high coverage raw sequencing reads for the 

target or (ii) have access to the target’s Y-STR haplotypes with a large number of 

markers. This highlights that the risk associated with genomic data via this route is 



dependent on the properties of each particular genomic dataset. For example, genomic 

data being sequenced for medical purposes usually includes only some particular parts 

of the individuals’ genomes and profiling their Y-STRs is impossible and hence 

performing such an attack is impractical. 

2. Means Assumption. We also assume that the intruder has access to the required 

resources including a database of linked surnames and Y-STR haplotypes.  

To perform such an attack, the existence of databases that contain Y-STR haplotypes 

and associated surnames is necessary.  Such databases should either be directly 

accessible by the intruder or they can be queried using Y-STR haplotypes. Currently, 

several databases and surname project websites exist that contain some Y-STRs and 

associated surnames [10]. Two of these – Ysearch [24] and Ymatch [25] both 

maintained by Family Tree DNA – contain data from throughout the world and can be 

searched by STR haplotypes. These databases include approximately 185,000 and 

1,300 records respectively. 

In addition, there is one UK specific project, named the Oxford Genetic Atlas Project 

(OGAP) [26], includes both Y-chromosome and mitochondrial databases involving 

over ten thousand volunteers from Britain and Ireland. Their services include 

deduction of the maternal and paternal clan, ancient ancestral mother and father as 

well as resolving genealogical relationship. However, the OGAP databases are neither 

publicly accessible nor searchable.  

Considering the approximate number of records in each genetic genealogical database 

that are currently available, our results show that the maximum risk of re-identifying a 

single individual’s genome by surname inference (assuming no auxiliary information) 

is less than 0.075% where n<200,000. Bear in mind that there are various factors 

which moderate this figure, deriving from the manner in which these databases have 

been populated. Firstly, these databases are global, so the proportion of records 

relevant to the British population will be smaller than the total, and that geographical 

separation is likely to be associated with separation of genomic patrilineage, this 

indicates that 0.075% represents an upper ceiling of the risk. On the other hand, 

socioeconomic biases among the customers of genetic genealogy companies may 

imply that certain groups and their surnames are over or underrepresented, so for 

example certain particularly rare but economically successful surnames may be 



associated with much higher risk. This will cause some error variance in our 

estimates, but is very difficult if not impossible to control for. 

However, this risk increases as the number of records available in genetic 

genealogical databases grows. Due to the rapid progress in genomic research and 

people’s interest in knowing about their family origins and history, the number of 

these databases is rising and several companies have plans to develop larger 

databases. Therefore, it is vital to consider policies governing such databases, their 

distribution, and the number of entities they can contain as they do significantly affect 

the re-identifiability of genomic data. 

It is worth noting that in their study Gymrek and her colleagues did not recover the 

surnames by using the publicly available search engines provided by Ysearch or 

SMGF; they downloaded the Ysearch database records onto their own server with the 

agreement of Family Tree DNA [27]. They did that in order to facilitate their analyses 

and carry out informative meta-analyses. This does somewhat contradict their 

assertion that the technique relies on free publicly available resources as not every 

public user can download these databases. In practice, this would not prevent a real 

intruder carrying out exactly the attack that they did but it would make it more 

difficult for the intruder to be able to verify certain information and therefore would 

impact on the intruder’s confidence in any given match. For example, as they had the 

complete database, they could confirm that the database was representative of the 

surname distribution for the US population and so they had higher confidence in the 

surnames recovered, could measure false positives in the matching and so on. 

3. 100% surname to mapping assumption. We assume that all the males with the 

same surname have the same Y-STR haplotype with the same ancestral origin. 

Therefore, to recover their surnames, we just need to have one of the males with that 

surname in the genealogical database. However, this assumption overestimates risk. 

We summarise the three main reasons for this, following King and Jobling [9]: First, 

most surnames, in particular common surnames, had several independent origin 

families during the period that surname usage became established, and therefore their 

Y-STR haplotypes are distinct as a consequence. For example, not all the “Smiths” in 

the population have the same paternal ancestor (at the time of surname establishment), 

so their Y-STR haplotypes will also vary. This is particularly true for surnames with 



an occupational or patronymic origin, which make up the majority of the most 

common surnames in the British population, rather than regional surnames, which 

were often specific to small settlements and thus have a much stronger genetic 

component. Second, there is the concept of Non-Patrilineal Transmissions (NPT), 

which refers to the introduction of non-paternal descendants into a surname group, for 

example by adoption, name change, inheriting the mother’s surname, or paternity 

misattribution. NPT has been estimated to occur at a rate of 1-4% per generation. 

Third, there is the relatively high rate of Y-STR mutations, so even two patrilineally 

related males who share a surname may have different Y-STR haplotypes. For an 

intruder to recover the surname of a genome, it would be necessary for the 

genealogical database to have a Y-STR haplotype which belongs to someone from the 

same family origin, with the same surname, and without too many mutations. This 

decreases the probability of inferring surnames compared to an estimation based on 

our assumptions. 

4. No divergence assumption. In common with most risk assessments of this sort we 

assume that data that are supposed to correspond do so. As all data processes carry a 

risk of errors (for example, contamination, or data entry errors) so all data processes 

that rely on this assumption therefore necessarily inflate estimates of risk.  

5. Motivation assumption. We assume an intruder with a sufficiently compelling 

motivation to carry out such an attack exists. This greatly simplifies the calculation of 

risk which is otherwise reliant on an equation such as that of Marsh et al. [28]: 

𝑝𝑟(𝑖𝑑𝑛𝑒𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑝𝑟(𝑎𝑡𝑡𝑒𝑚𝑝𝑡) × 𝑝𝑟(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|𝑎𝑡𝑡𝑒𝑚𝑝𝑡) 

where the first element of the right hand side is impossible to measure (but is almost 

certainly less than 1). 

6. Assumption that the payload is independent of the probability. This assumption is 

related to the preceding one. The payload is likely to be related to the intruder’s 

motivation. If it is given that a motivated intruder exists then the impact of the attack 

is likely to be unrelated to its risk. However if the payload motivates the intruder then 

it won’t be independent.
13
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 A related point here is that the equation of risk with event probability is based on an immature model of risk. 

Mature models of risk consider both the likelihood of an event and its payload/impact. 



The net effect of this set of assumptions is to inflate our estimates of risk. However, they do 

not do so by a fixed or reliable quantity (and indeed the effect is likely to change over time). 

We would therefore regard that the estimates reported herein are upper bounds. 

5 CONCLUSION 

Genomic research and its applications are progressing rapidly; whilst producing much 

valuable knowledge the genomics revolution also raises serious privacy concerns. Recently, it 

has been shown that male genomes are vulnerable to re-identification by surname inference. 

By modelling the distribution of surname frequencies in Britain, we have demonstrated that 

even though it is possible to infer the surname associated with a personal genome, the 

probability of such an inference is significantly dependant on the size (and availability) of 

external genealogical databases that include Y-chromosome haplotypes and the associated 

surnames. 

We observe that common surnames are less informative and are thus less likely to lead to re-

identification, whilst rare surnames may be very informative. Considering the impact of 

recovering different surnames on the overall risk of re-identification, we illustrate that the 

per-record risk of re-identification via surname inference is relatively low when the size of 

the databases containing Y-chromosome-surname haplotypes is not too large. This 

emphasises that it is crucial to re-consider policies concerning these databases, their 

availability, and the number of records they can contain.   

Further, this work outlines that there are several other factors that affect the risk of re-

identifying personal genomes by surname inference. In particular, additional non-genomic 

information that may be attached to the genomic data is critical in determining whether an 

end-to-end re-identification is possible.  The quantity and level of detail of such additional 

data is thus important. We demonstrate that with large databases the simple act of adding age 

and region starts to move some groups of surnames into high risk categories. We noted that it 

was particularly risky to include the exact age of an unusually old person (relative to the 

general population).  

Finally, we note that the assumptions that we made in constructing our intruder scenarios 

cause our risk estimates to be inflated and that therefore the estimates should be regarded as 

upper bounds. Overall, we argue that in a British context, these upper bounds on the per-



record risk of re-identifying personal genomes by surname inference are – at present – low. 

However, if personal genomes are to be shared we should be very careful with what metadata 

are associated with the shared genomes and we must also be alert to the development of large 

(both in number of entries and of markers) genetic genealogical databases.  In general, the 

paper demonstrates that the risk of a privacy breach of genomic data via this route is strongly 

dependant on the particular properties of each genomic dataset and therefore should be 

assessed on a case by case basis. 
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