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Abstract 

Recent survey literature shows an increasing interest in survey designs that adapt data 

collection to characteristics of the survey target population. Given a specified quality 

objective function, the designs attempt to find an optimal balance between quality and 

costs. Finding the optimal balance may not be straightforward as corresponding 

optimization problems are often highly non-linear and non-convex. In this paper, we 

discuss how to choose strata in such designs and how to allocate these strata in a 

sequential design with two phases. We use partial R-indicators to build profiles of the 

data units where more or less attention is required in the data collection. In allocating 

cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys 

that are run continuously. We demonstrate the impact of the sample size in a simulation 

study and provide an application to a real survey, the Dutch Crime Victimisation Survey. 

Keywords: Nonresponse; Responsive survey design; Representativeness. 
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1. Introduction 

In the recent literature, there is an increased interest in survey data collection designs in 

which design features are adapted to characteristics of units in the survey target 

population (Groves and Heeringa 2006, Wagner 2008 and 2013, Särndal 2011 and 

Schouten, Calinescu and Luiten 2013). These characteristics may come from the 

sampling frame, other linked administrative data or from paradata observations, and they 

form strata in which design features are differentiated. This paper is about the formation 

of such strata and the design of interventions given the strata. 

Most literature about adapting survey design is restricted to nonresponse error and 

ignores other errors like measurement error. We will restrict ourselves also to 

nonresponse error in this paper in order not to make the stratification problem overly 

complex. However, there is a clear need for a more general approach (Calinescu, 

Schouten and Bhulai 2012, Calinescu and Schouten 2013) as the survey mode is one of 

the most prominent design features and is known to affect multiple errors simultaneously. 

We leave this to future research. 

The implementation of designs that differentiate design features is marked by the 

following steps: 

1. Choose proxy measures for survey quality; 

2. Choose a set of candidate design features, e.g. survey modes or incentives; 

3. Define cost constraints and other practical constraints; 

4. Link available frame data, administrative data and paradata; 

5. Form strata with the auxiliary variables for which design features can be varied; 

6. Estimate input parameters (e.g. contact and participation propensities, costs); 
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7. Optimize the allocation of design features to the strata; 

8. Conduct, monitor and analyse data collection; 

9. In case of incidental deviation from anticipated quality or costs, return to step 7; 

10. In case of structural deviation from anticipated quality or costs, return to step 6; 

11. Adjust for nonresponse in the estimation. 

For an elaboration of these steps see Groves and Heeringa (2006), Peytchev et al (2010) 

and Schouten, Calinescu and Luiten (2013). Most of the steps are, however, not specific 

to adaptive survey designs, rather it is steps 5 to 7 where the adaptation comes in. In this 

paper, we consider these steps. 

The actual implementation in practice depends on the setting and the type of survey. 

There is a wide range of labels for designs that vary design features over population 

units: responsive survey design, adaptive survey design, responsive data collection 

design, targeted survey design and tailored survey design. Their inventors come from 

different survey settings and as a result have slightly different viewpoints on how the 

designs should be constructed and what they need to achieve. The main differences in 

settings between surveys are: 1) The length of the data collection period and the number 

of instances for intervention, 2) the application of refusal conversion methods, 3) the 

strength of prior knowledge from frame data, administrative data and paradata in 

previous waves of the same survey, 4) a focus on learning during data collection versus 

learning from wave to wave, and 5) a focus on both structural and incidental deviations 

versus a focus on just structural deviations. On the one end, there are the responsive 

survey designs as introduced by Groves and Heeringa (2006) where surveys have a long 

data collection with several instances for intervention, where refusal conversion is 
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possible, where there is relatively little prior knowledge, where the focus is on learning 

during data collection and on both structural and incidental deviations. On the other end, 

there are adaptive survey designs as described by Schouten, Calinescu and Luiten (2013) 

that refer to relatively short data collection periods with limited intervention and limited 

possibility to convert refusers, with strong prior knowledge, a focus on learning in 

between waves and on structural deviations only. In fact, any design phase of responsive 

survey design, i.e. any period in between interventions, could be adaptive. Here, we 

discuss the selection of strata for a single intervention, i.e. for a single adaptation of 

design features, and throughout the paper we refer to such designs simply as adaptive 

survey designs.  

If the focus is on nonresponse, ideally, the characteristics used for forming strata explain 

both the key survey variables and the propensity to respond. The formation of strata in 

adaptive survey designs is very similar to formation of strata in the post data collection 

adjustments for nonresponse. The reason for this similarity is very simple: Adaptive 

survey designs attempt to adjust for nonresponse by design rather than just post-hoc in 

the estimation. Various authors have come up with explicit proxy measures for 

nonresponse error in the optimization of adaptive survey designs: Schouten, Cobben and 

Bethlehem (2009) propose to use representativeness indicators and the coefficient of 

variation of response propensities and Särndal (2011) and Lundquist and Särndal (2013) 

propose to use balance indicators. Other authors describe a less explicit approach in 

which sample units are prioritized based on response propensity models (e.g. Peytchev et 

al 2010, Wagner 2013). However, all share a focus on reducing the variation in response 

propensities for a selected set of auxiliary variables. The obvious and legitimate question 
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is whether such adjustment by design on a specified set of variables has any use when the 

same variables can also be employed afterwards in the estimation. In our opinion, 

adjustment by design as a supplement to adjustment afterwards is useful for two reasons: 

First, it is inefficient to have a highly unbalanced response; a large variation in 

adjustment weights is to be avoided and may inflate standard errors. Second, and more 

importantly, the adjustment by design originates from the rationale that stronger 

imbalance on relevant, auxiliary variables is a signal of even stronger imbalance on 

survey target variables. For a more elaborated discussion see Schouten, Cobben, 

Lundquist and Wagner (2013) and Särndal and Lundquist (2013). Schouten et al (2013) 

provide theoretical and empirical evidence that, on average, a design with a more 

representative response has smaller nonresponse biases, even after post-survey weighting 

on the characteristics for which representativeness was assessed and evaluated.  

Adaptive survey designs have some similarity to balanced sampling, e.g. Deville and 

Tillé (2004), Grafström and Schelin (2014) and Hasler and Tillé (2014), However, 

adaptive survey designs attempt to balance response to a given sample, not the sample 

itself. In other words, adaptive survey designs optimize the allocation of treatments or 

design features given a sample but not the inclusion into the sample. For the same reason, 

the criticism that adaptive survey design resemble quota sampling is false; the balance of 

response is assessed against a probability sample not against the population. 

Schouten et al (2012) state that partial R-indicators can be used as tools to monitor and 

analyse nonresponse and to improve survey response through adaptive survey design. 

The last claim has not been substantiated, however. In this paper, we answer three 

research questions: 1) Can partial R-indicators be used to identify (and monitor) strata for 
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adaptive survey designs?, 2) If so, how to optimize intervention for the strata?, and 3) 

How to account for the frequency and length of the survey data collection in the 

optimization? 

In order to be able to use the indicators for building population strata, it is imperative that 

they are accompanied by standard error approximations. In this paper, as an important 

by-product, we provide such approximations. At www.risq-project.eu code in SAS and R 

and a manual (De Heij, Schouten and Shlomo 2014) are available for the computation of 

R-indicators and partial-R-indicators. The code is extended with standard error 

approximations for all indicators and other features compared to the first version that was 

launched in 2010. 

In Section 2, we briefly review the partial R-indicators, present bias and standard error 

properties and explain how the indicators can be used to build and evaluate profiles of 

nonrespondents. In Section 3, we discuss the optimization of an intervention. Next, we 

provide a simulation study in Section 4 where we evaluate the impact of the sample size 

on intervention decisions. In Section 5, we demonstrate the formation of strata and the 

optimization of the design for a real dataset, the Dutch Crime Victimisation Survey. We 

conclude with a discussion in Section 6.  

 

2.  Building Nonrespondent Profiles  

In this section, we discuss the first research question: Can partial R-indicators be used to 

identify strata for adaptive survey designs? We first revisit the various partial R-

indicators. As for R-indicators, partial R-indicators have a bias and imprecision that 

depend on the sample size. We derive approximations to these biases and standard errors. 
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Last, we  discuss how they can be used to form profiles. In the optimization of adaptive 

survey designs, we also employ the coefficient of variation (CV) of the estimated 

response propensities which sets an upper bound to the absolute bias of  response means.   

 

2.1 Partial R-indicators Revisited 

We use the notation and definition of response propensities as set out in Schouten, 

Shlomo and Skinner (2011) and Shlomo, Skinner and Schouten (2012).  We let U  denote 

the set of units in the population and s the set of units in the sample. We define a 

response indicator variable iR  which takes the value 1 if unit i  in the population 

responds and the value 0 otherwise. The response propensity is defined as the conditional 

expectation of iR  given the vector of values ix of the vector X  of auxiliary variables: 

( ) ( 1| ) ( 1| )X i i i i ix E R X x P R X xρ = = = = = =  and denote this response propensity by Xρ . 

We assume that the values ix  are known for all sample units, i.e. for both respondents 

and non-respondents.   

 

We define the R-indicator as: )(21)( XX SR ρρ −= . The estimation of the propensities is 

typically based on a logistic regression model. The estimator of the variance of the 

response propensities is  

                                           ∑ −
−

=
s XiXiX xd

N
S 22 )ˆ)(ˆ(

1

1
)ˆ(ˆ ρρρ ,  

where 1−= iid π  is the design weight and ∑=
s iXiX xd

N
)(ˆ

1ˆ ρρ . We estimate the R-

indicator as 
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                                                          )ˆ(ˆ21)ˆ(ˆ
XX SR ρρ −= .                                                 (1) 

The bias adjusted R-indicator as shown in Shlomo, Skinner and Schouten (2012) is: 

    [ ] i

1

si sj
T
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−
∈ ∈− ∑ ∑−−+−= ρρ                   (2) 

where i
T
ii xxhz )ˆ( β∇= and h is the link function of the logistic regression.  

The standard error of the R-indicator is also presented in  Shlomo, Skinner and Schouten 

(2012).  

The coefficient of variation is calculated as the bias-adjusted standard error of the 

response propensities as shown in (2) divided by the average response rate and estimated 

by: ρρ ˆ/)ˆ(ŜCV XADJBIAS−= . The estimate of the variance of the coefficient of variation 

is presented in De Heij, Schouten, Shlomo, 2014.  The coefficient of variation and its 

estimated standard error are included in the new versions of the SAS and R code on 

www.risq-project.eu   (De Heij, Schouten, Shlomo, 2014). 

The unconditional partial indicators measure the distance to representative response for 

single auxiliary variables and are based on the between variance given a stratification 

with categories ofZ  (Schouten, Shlomo and Skinner 2011). The variable Z  may or may 

not be included in the covariates of the model X  for estimating the response propensities. 

Given a stratification based on a categorical variable Z having categories Kk ,,2,1 K= , 

the variable level unconditional partial R-indicator is defined as )|(),( ZSZP XBXu ρρ =  and 

              ∑∑ == −≅−
−

= K
1k
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N
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1N

1
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where kX ,ρ is the average of the response propensity in stratum k . This between variance 

is estimated by  

                                              ∑ = −= K
1k

2
Xk,X

k
X

2
B )ˆˆ(

N

N̂
)Z|ˆ(Ŝ ρρρ ,                               (4)  

where 
kX ,ρ̂  is the design-weighted stratum mean of the estimated propensities, kN̂  is the 

estimated population size of stratum k.  

At the category level Z=k, the unconditional partial R-indicator is defined as:  

             
( ) ( )Xk,X

k

Xk,X

Xk,X
XBXu N

N
)kZ|(S),k,Z(P ρρ

ρρ
ρρ

ρρ −=
−
−

==                        (5) 

and is estimated by 

                               )ˆˆ(
N

N̂
)kZ|ˆ(Ŝ)ˆ,k,Z(P̂ Xk,X

k
XBXu ρρρρ −=== .                       (6) 

Conditional partial R- indicators measure the remaining variance due to variable Z within 

sub-groups formed by all other remaining variables, denoted by −X  (Schouten, Shlomo 

and Skinner 2011). In contrast to the unconditional partial R- indicator, the variable Z 

must be included in the model for estimating response propensities. Let kδ  be the 0-1 

dummy variable that is equal to 1 if kZ =  and 0 otherwise. Given a stratification based 

on all categorical variables except Z, denoted by −X  and indexed by j, j=1...J, the 

conditional partial R-indicator is based on the within variance and is defined as 

)|(),( −= XSZP XWXc ρρ  and   

                             ∑ ∑= ∈
− −

−
= J

1j Ui
2

j,XiXX
2
w

j

))x((
1N

1
)X|(S ρρρ                       (7) 

and is estimated by  
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                                      ∑ ∑= ∈
− −

−
= J

j si jXiXiXw
j

xd
N

XS
1

2
,

2 )ˆ)(ˆ(
1

1
)|ˆ(ˆ ρρρ .                 (8) 

At the categorical level of Z=k, we restrict the within variance to population units in 

stratum k and obtain: 

                                ∑ ∑= ∈
−

−
= J

j Ui jXiXikXc
j

x
N

kZP
1

2
,, )),((

1

1
),,( ρρδρ                   (9) 

 and estimated by 

                                ∑ ∑= ∈
−

−
= J

j si jXiXikiXc
j

xd
N

kZP
1

2
,, )ˆ),(ˆ(

1

1
)ˆ,,(ˆ ρρδρ                (10) 

In order to compare the partial R-indicator values and to select categories that show the 

strongest under representation, their values need to be accompanied by the standard 

errors. In earlier papers, however, the properties of partial R-indicators have only been 

simulated through resampling methods. In practical monitoring and analysis, resampling 

is too time-consuming and cumbersome. We, therefore, provide analytic bias and 

standard error approximations. 

2.2   Bias adjustment and standard error approximations for partial R-indicators 

The strategy taken in the bias and standard error analytic approximations strongly 

resemble those for the overall R-indicator. For the sake of brevity, we, therefore, give 

only condensed derivations here. We refer to Shlomo, Skinner and Schouten (2012) for 

an elaborate description. 

2.2.1 Bias adjustment 

Empirical work has shown that the size dependent bias affecting the R-indicator in (2)  

has little impact on the variable level partial R-indicators when sample sizes are large and 
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no impact on the categorical level partial R-indicators. The main reason for this is that the 

variance of the partial R-indicators becomes the dominant property which needs to be 

accounted for. Therefore, for smaller sample sizes, we adopt  a method of pro-rating the 

bias correction term of (2) between the decomposed variance components defining the 

variable level partial R-indicators as follows: The variable level unconditional partial R-

indicator  ),( Xu ZP ρ  is  the between variance given the stratifying variable Z. The variable 

level conditional partial R-indicator ),( Xc ZP ρ   is the within variance given the stratifying 

variable −X  (all auxiliary variables except Z). By calculating the complementary 

between and within variance for each of the stratifying variables, we can implement a 

pro-rating of the bias correction term for (2) between the complimentary between and 

within variances for small sample sizes.  

2.2.2 Standard error approximations for variable-level partial R-indicators 

To obtain the variance estimates for the variable level partial R-indicators, we observe 

that for the unconditional partial R-indicator )|(),( ZSZP XBXu ρρ =  we can obtain an 

estimate of the variance according to the methodology of obtaining the estimated 

variance of the  overall R-indicator as set out in Shlomo, Skinner and Schouten (2012) 

but with the change that the response propensities are modelled according to a 

stratification on the single variable Z. Similarly, for the conditional partial R-indicator 

)|(),( −= XSZP XWXc ρρ  we can obtain an estimate of the variance according to the 

methodology of the overall R-indicator  but with the change that the response 

propensities are modelled according to a stratification on −X . This approximation is due 

to the fact that only main effects and second order interactions are typically used to 
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estimate response propensities in the logistic regression model as opposed to a complete 

cross-classification of auxiliary variables.  

2.2.3 Standard error approximation for unconditional category-level partial R-

indicator  

To obtain the variance estimates for the categorical level partial R-indicators, we denote  

−X   the auxiliary variables taking values Jj ,...,2,1=  and Z  a categorical variable for 

which the partial indicator is calculated with categories Kk ,,2,1 K= .   

The variance of the estimated unconditional category-level partial R-indicator, 

)ˆ,,(ˆ
Xu kZP ρ  in (6)  can be written as:   

   (11) 

assuming that kN is the number of units with  Z=k  and is known,  k
k
i

si
iikX Nd ˆ/ˆˆ

, δρρ ∑
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=

where 1=k
iδ  if kZ =  and 0=k

iδ  otherwise, and Nd
si

iiX /ˆˆ ∑
∈

= ρρ  . In general kN  may 

not be known, and we may need to estimate it by the sample-based estimator 

∑=
ks ik dN̂ . This will introduce a small additional loss of precision. Since                        

                                                  Ck,X
k

k,X
k

X
ˆ

N

N̂
1ˆ

N

N̂ˆ ρρρ 









−+=  

where  

                                              )N̂N/()1(ˆdˆ
k

k
i

si
iik,X C −−= ∑

∈
δρρ ,  

we have that  

                                                   )ˆ(
ˆ

)ˆ,ˆ( ,, kX
k

XkX Var
N

N
Cov ρρρ =                                     (12) 

( ) [ ])ˆ,ˆ(2)ˆ()ˆ(
ˆ

ˆˆ
ˆ

))ˆ,,(ˆ( ,,, XkXXkX
k

XkX
k

Xu CovVarVar
N

N
Var

N

N
kZPVar ρρρρρρρ −+=−=



 13

and from (11) and (12) 
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We restrict ourselves to a first-order approximation and approximate )ˆ( ,kXVar ρ  by a 

standard design based variance estimator ∑
∈si

iid φ̂ , where ki
k
ii N̂/ˆˆ ρδφ =  and approximate 

)ˆ(
, CkX

Var ρ   by a standard design based variance estimator ∑
∈si

iid υ̂ , where 

)ˆ/(ˆ)1(ˆ ki
k
ii NN −−= ρδυ . The standard error is obtained by taking the square root of the 

expression in (13).           

2.2.4 Standard error approximation for conditional category-level  partial R-

indicator:  

For the conditional category-level partial R-indicator, )ˆ,,(ˆ
Xc kZP ρ in (10), we use similar 

methodology as the variance estimation of the R-indicator described in Shlomo, Schouten, 

and Skinner (2012) but we add in the stratification variable −X  indexed by Jj ,...,2,1= .  

The estimate of the variance of the R-indicator was based on the decomposition of 

)ˆ(Ŝ X
2 ρ   into the part induced by the sampling design for a fixed value of ̂β  and the part 

induced by the distribution of β̂  as obtained from the logistic regression response model.  

We take the latter to be  )(~ˆ Σβ,β N  where 1 1( ) var{ [ ( ' )] } ( )i i i is
d R h− −= −∑Σ J β x β x J β  and

( ) { ( )}E=J β I β is the expected information.  The estimate of the variance for the 

conditional category- level partial R-indicator )ˆ,,(ˆ
Xc kZP ρ  is given by:  
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]}ˆˆ[tr{var4]u[var))ˆ,k,Z(P̂var( ˆ

J

1j
s jisXc k

βββ)(βB(AA ′−−+∑′+≈ ∑∑
=

βρ (14)                                                                                                                             

where jiu  replaces 2)ˆˆ( jXiid =− ρρ and the first term in (14) is  treated as the standard 

design-based variance under a stratified sample design of a linear statistic. For the latter 

terms in (14), we replace the A and B from the derivations in Shlomo, Skinner and 

Schouten (2012) under the stratified design: )ˆˆ()ˆˆ(1Â
1

jXi

J

j
s jXi

k
ii zzdN

k
=

=
= −−−= ∑∑ ρρδ  

and  )ˆˆ()ˆˆ(1ˆ
1

′−−−= =
=

=∑∑ jXi

J

j
s jXi

k
ii zzzzdN

k
δB . 

  

2.3 Building nonrespondents profiles from auxiliary variables 

Schouten et al (2012) argue that partial R-indicators can be used to improve survey 

design. This claim has not been substantiated, however, in their paper. In this section, we 

show how to employ the indicators to form nonrespondent strata. It must, however, be 

noted that the indicators of course are no prerequisite to building nonrespondents profiles; 

other statistics exist and can be applied to do the same. The utility of the indicators lies in 

three properties: 1) they can be computed at the variable-level, 2) they form a suite with 

R-indicators and naturally allow for a top-down analysis, , and 3) they incorporate the 

size and impact of subpopulations. 

The construction of sensible nonrespondent profiles and the efficacy of adaptive survey 

designs in reducing nonresponse error are fully dependent on the relevance of available 

auxiliary variables. Partial R-indicators, and any other proxy measure for that matter, are 

merely tools to transform and condense such multi-dimensional information to useful and 

manageable dimensions. As for nonresponse adjustment in the estimation, adaptive 
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survey design that are based on variables with a weak relation to survey target variables 

may be counterproductive and increase imprecision (Little and Vartivarian 2005). The 

pre-selection of relevant auxiliary variables is, therefore, crucial, and the absence of such 

variables should warrant against adaptive survey designs.  

Schouten, Cobben, Lundquist and Wagner (2013) show that when auxiliary variables are 

a random selection from the universe of all variables on a population, then larger values 

of the R-indicator and coefficient of variation for one of the candidate designs imply 

larger expected values of the indicators for any other randomly drawn variable on that 

design. They further show that under the same condition a larger coefficient of variation 

implies a larger expected remaining nonresponse bias for commonly used estimators that 

employ the selected variables to adjust bias of an arbitrary other variable. Finally, they 

show that when the random selection of variables is from a subset of the universe of all 

variables, for example those variables that correlate above a given threshold with survey 

target variables, then these two results still hold for any other variable selected from that 

subset. Although, we cannot assume that auxiliary variables originate from a random 

selection process, these conclusions do provide guidance on the importance of auxiliary 

variables: The utility of adaptive survey design, regardless of adjustment in the 

estimation, is proportional to the strength of the association between auxiliary variables 

and survey target variables. 

There are two main differences between the pre-selection of auxiliary variables for 

adaptive survey design and for adjustment afterwards. The first difference is that adaptive 

survey design strata need to be formed before or during data collection while 

nonresponse adjustment strata can be formed after data collection is completed. For some 
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surveys the actual publication date of their statistics may be several months after the 

completion of data collection so that there is sufficient time to link additional 

administrative data or population tables and to update some of the variables to the 

reference period of the survey. Consequently, the set of auxiliary variables for 

nonresponse adjustment may be much larger and the variables may be updated. The 

second difference lies in the required properties of the auxiliary variables. Since 

nonresponse adjustment is done when nonresponse is a given fact, auxiliary variables 

need to relate to key survey variables and to the specific realized nonresponse mechanism. 

However, since adaptive survey design is affecting the actual response propensities, 

auxiliary variables need to relate to key survey variables and to all likely nonresponse 

mechanisms linked to the candidate design features. Hence, for adaptive survey design, 

the set of auxiliary variables should be made wider. 

Importantly, in the selection of auxiliary variables, it should be avoided that the variables 

are strongly collinear. Ideally, the variables should be more or less independent and cover 

different dimensions of the target population. In practice, it is inconvenient to first 

construct such variables from the available list of variables (e.g. as principal components 

or factors) as the resulting variables are difficult to interpret and to translate to effective 

data collection treatments. Hence, it is better to use a selection of meaningful variables, 

although they may correlate to some extent.  Conditional partial R-indicators are 

designed to remove remaining collinearity, but they follow from the idea that collinearity 

is modest. 

In this paper, we assume survey key statistics are population means or totals and we take 

the coefficient of variation (CV) as the target proxy nonresponse measure. Given a pre-
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selected set of auxiliary variables, nonrespondent profiles can be built by entering all pre-

selected variables to a (logistic) regression model for response. The next step is to judge 

whether the resulting CV is acceptable or not, and, hence, whether it is necessary to 

inspect the variable-level and category-level partial R-indicators. It is important to remark 

here that it is the effect size that should determine further inspection and not the standard 

error or significance; for large sample sizes any partial R-indicator would be significantly 

different from zero. Adaptation of the design is needed only when the CV is above a 

specified threshold. Given that R-indicators and coefficients of variation are fully 

dependent on the choice of auxiliary variables, it is, however, not straightforward how to 

choose such a threshold. There are two options: an internal threshold and an external 

threshold. An internal threshold is a threshold based on one or more earlier waves of the 

same survey of acceptable quality. An external threshold is a threshold based on one or 

more other surveys of acceptable quality. Regardless of the type of threshold, the CV 

threshold should be computed using exactly the same model. When a CV attains a value 

above the internal or external threshold, then nonrespondents profiles should be derived 

from the variables and categories within those variables that have large and significant 

unconditional and conditional values. In section 3.3, we discuss how these categories can 

be used in constructing adaptive design strata. 

 

3. Designing an adaptive follow-up from nonrespondent profiles 

In this section, we discuss the other two research questions: How to optimize intervention 

given a set of strata?, and how to account for the frequency and length of the survey data 

collection in the optimization? In order to avoid an overly complex approach, we make 
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some pragmatic assumptions: We assume that a survey designer is considering a single 

intervention in which the first phase is cheaper than the second phase. We assume, 

furthermore, that the designer anticipates that the second phase is really needed to 

improve accuracy of the key survey statistics. The last assumption is made because 

accuracy has two dimensions: bias and variance. Without such an assumption, one would 

have to check whether a smaller bias using phase 2 outweighs a smaller variance using 

phase 1 only with a (much) larger sample size. 

3.1 Approaches to allocate cases for follow-up 

To date, four approaches to the optimization of adaptive survey designs can be identified 

in the literature: 1) a trial-and-error approach (e.g. Laflamme and Karaganis 2010, Luiten 

and Schouten 2013), 2) a set of stopping rules (e.g. Lundquist and Särndal 2013), 3) 

propensity-based prioritization (e.g. Peytchev et al 2010, Wagner 2013, Wagner and 

Hubbard 2013), and 4) a mathematical optimization problem (e.g. Schouten, Calinescu 

and Luiten 2013). The approaches vary in their explicit focus on mathematical 

optimization, their certainty to be effective, their ability to be linked to candidate data 

collection strategies, their reproducibility, and their reliance on the accuracy of response 

propensity estimates.  

The first approach is a trial-and-error approach. Different population subgroups receive 

different treatments that have proven to be effective from practical experience and 

historic survey data. The subgroup response propensities for each treatment are not 

explicitly modelled or estimated and costs are only roughly kept at the available budget 

level. There is no explicit mathematical optimization. As a result, a successful 

improvement of quality using the design is uncertain until it is fielded and analysed. 
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Furthermore, the approach may be subjective and not easily reproducible by others. 

However, there is no dependence on models or estimated response propensities and it has 

room to include expert knowledge. Luiten and Schouten (2013) describe such an 

approach that did lead to improved (partial) R-indicator values for the Survey of 

Consumer Sentiments without exceeding budget levels.  

The second approach is a set of stopping rules to decide whether continued efforts are 

made to population subgroups. This approach comes closest to the responsive survey 

design paper by Groves and Heeringa (2006) that refers to phase capacity. The approach 

is implemented and studied by Lundquist and Särndal (2013). Lundquist and Särndal 

estimate response propensities for subgroups and prolong efforts in subgroups until a 

lower limit, say 60%, is reached. This approach also does not make use of an explicit 

mathematical optimization model, but stopping rules are constructed based on a quality 

objective function. As a result this approach has some guarantee that quality is improved. 

It also allows to some extent for the inclusion of expert knowledge to choose the most 

effective strategies within subgroups and it is only mildly sensitive to the accuracy of 

response propensities. 

The third approach is prioritization of sample units in data collection based on estimated 

response propensities. The response propensities are estimated during data collection and 

the propensities of nonrespondents are sorted. The lowest propensity cases have higher 

priority and receive more effort. This approach is not linked to a specific quality 

objective function but it does aim at equalizing response propensities; like the stopping 

rules there is some guarantee that quality is improved. It is, however, more sensitive to 

accuracy of response propensities than the first two approaches. More importantly, it is 
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harder to link effective data collection strategies as the sorted cases do not have an easy 

translation into characteristics. See for example Wagner and Hubbard (2013) for a 

discussion. 

The fourth approach is a fully mathematical formulation and optimization as is presented 

by Schouten, Calinescu and Luiten (2013). The probabilities that subgroups are assigned 

to treatments, so-called strategy allocation probabilities, form the set of decision variables. 

The quality objective function and cost and other constraints are explicitly written in 

terms of these decision variables, and optimized using (non)linear programming. If all 

input parameters, e.g. the response propensities, are estimated accurately, then the 

approach leads to optimal and predictable improvement of quality. However, the 

approach is sensitive to inaccurate input parameters. Furthermore, the optimization 

problems can be nonlinear and non-convex, depending on the form of the objective 

function and cost constraints, which may become computationally intractable. The R-

indicator and coefficient of variation are examples where the optimization becomes 

nonlinear. 

A practically feasible and pragmatic approach may be in between a full trial-and-error 

and a full mathematical optimization: it is robust but has some mathematical rigor, 

objectivism and structure and allows for quality-cost trade-offs. We call such an approach 

a structured trial-and-error approach. The stopping rules and propensity-based 

prioritization come close to such an approach, but they are not explicitly linked to proxy 

nonresponse bias measures. Furthermore, the propensity-based prioritization is sensitive 

to sampling variation and cannot easily be linked to effective treatments, and the stopping 

rules do not allow for an easy quality-cost trade off. In section 3.3, we present a 
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structured trial-and-error approach based on partial R-indicator values. Before we do, we 

discuss a crucial aspect of a survey: the frequency and length of the data collection.  

3.2 Types of surveys 

It makes a big difference in designing an adaptive survey design whether a survey has a 

finite or infinite horizon data collection period, whether it is run only once (or 

infrequently) or continuously, and whether there is strong or weak prior knowledge about 

the response propensities. Adaptive survey designs are best suited for continuously 

running surveys with a long time horizon or surveys with strong prior knowledge about 

the effectiveness of treatments. In surveys with a long time horizon, budget can be 

invested in trying different treatments to learn how the target population responds and 

there is no immediate need to optimize treatment during data collection. Surveys with 

strong prior knowledge resemble surveys for which there has been a long time to learn 

how treatments work. At the opposite of the spectrum, in surveys with weak prior 

information that are run once and for a short period, the only option is to learn and act 

during data collection. In this paper, we will consider both extremes. 

Suppose a survey runs for m time periods or it is requested that the design of a survey is 

left unchanged for m time periods. In practice, the survey may run for a longer time, but 

method effects, i.e. a change of design, are constrained to be absent for this period. 

Suppose that for each time period statistics need to be produced. This publication 

frequency implies that there is room only to experiment with the design during time 

period 1 and room to optimize the design before the statistics for time period 1 are 

published; once data collection starts for time period 2, the design needs to be fixed. 

Suppose further that, in each period, data collection is split into two phases. The first 
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phase is conducted for the full sample, but the second phase can only be conducted for a 

proportion q of the nonrespondents due to budget constraints. Now, say that a follow-up 

costs the same for each nonrespondent. Then over the full length of the survey, qm of a 

one time period full follow-up budget is available. In the first time period a subsample of 

proportion p of the nonrespondents may receive follow-up, where, generally, p will be 

larger than q, so that an investment is made in the first time period. For the remaining m-

1 time periods, a budget of qm-p is left, which amounts to (qm-p)/(m-1)  per time period. 

For a continuous survey with a long time horizon, (qm-p)/(m-1) ≈ q and p can be taken 

equal to 1. For a one-time only survey, it must hold that p = q.  

Apart from the length and budget of the survey, the choices of p and the individual 

subsampling probabilities depend on the strength of the prior knowledge about the phase 

2 response propensities. The inclusion of such knowledge demands a Bayesian approach, 

which is beyond the scope of the present paper. In the following, we assume only weak 

knowledge exists about the overall phase 2 response rate and costs. 

3.3 A structured trial-and-error approach 

We consider the two extreme scenarios: a one-time only survey and a continuous survey 

with a long-time horizon. For the first scenario, we suggest the following steps: 

1. After phase 1 derive the CV, R-indicator and partial R-indicators; 

2. Adapt to the nonresponse by: 

a. Inspect the variable-level partial R-indicators and select variables for which 

unconditional and conditional values are significantly different from zero; 

b. Select all categories of those variables that have a significant negative 

unconditional value and a significant conditional value; 
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c. Form a stratification by crossing all categories and, possibly, collapse empty or 

small strata; 

d. Compute the category-level unconditional partial R-indicator for the new 

stratification variable and order the strata by their sign and p-value; 

e. Select strata for follow-up based on their rank until p cases are selected. 

For the second scenario, the steps are: 

1. After phase 2 derive the CV, R-indicator and partial R-indicators; 

2. Adapt to the nonresponse by: 

a. Inspect the variable-level partial R-indicators and select variables for which 

unconditional and conditional values are significantly different from zero; 

b. Select all categories of those variables that have a significant positive 

unconditional value and a significant conditional value; 

c. Form a stratification by crossing all categories and, possibly, collapse empty or 

small strata; 

d. Compute the category-level unconditional partial R-indicator for the new 

stratification variable and order the strata by their sign and p-value; 

e. Select strata for follow-up based on their rank until p cases are selected. 

In both scenarios it is assumed that adaptation is needed. Under scenario 1, it is assumed 

that the indicator values do not satisfy the prescribed threshold. Under scenario 2, it is 

assumed that the required budget to apply phase 2 to all nonrespondents is too small. The 

above approaches provide structure but still are essentially trial-and-error. There is no 

guarantee that the adaptation leads to an optimal allocation and better accuracy. In 

sections 4 and 5, we analyse the scenarios in a simulation study and a real application.. 
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4. A simulation study 

For the simulation study, we use a dataset from the 1995 Israel Census Sample of 

Individuals aged 15 and over (N=753,711). Population response propensities were 

calculated using a 2-step process:  

1. Probabilities of response were defined according to variables: child indicator, income 

from earnings groups, age groups, sex, number of persons in household and three 

types of  localities. These variables define groups that are known to have differential 

response rates in practice. Based on the probabilities, we generated a response 

indicator. 

2. Using the response indicator as the dependent variable, we fitted a logistic regression 

model on the population using the above explanatory variables where type of locality 

and size of household were interacted. The predictions from this model served as the 

‘true’ response propensities for our simulation study.  

The overall response rate generated in the population dataset was 69.2%. Table 4.1 

presents the differential response rates according to the variables in the model that 

generated the  population response propensities. High non-response rates in categories are 

likely to cause the sub-group in the population to be under-represented according to the 

partial R-indicators. 

From the population, we drew three samples: 1:50 sample (sample size of 15,074),  1:100 

sample (sample size of 7,537) and 1:200 sample (sample size of 3,769), using simple 

random sampling and generated a response/nonresponse indicator according to the 

propensity to respond as defined in  the population. The response rates for each original 
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sample are in Table 1 in the second column and the R-indicators and coefficient of 

variations are presented on the left side (columns 3 and 4)  of  Table 4.2. 

Table 4.1: Percent response generated in the simulation population dataset according to 

auxiliary variables. 

Variable Category Percent  
Response 

Variable Category Percent  
Response 

Children in 
Household 

None 68.1 Sex Male  68.4 
1+ 74.8 Female 71.0 

Age group 15-17 77.4  Income 
Group 

Low 71.1 
18-21 65.2 2 67.8 
22-24 62.5 3 67.7 
25-34 64.6 4 67.5 
35-44 68.7 High 66.4 
45-54 72.2 Number of 

Persons in 
Household 

1 68.5 
55-64 71.0 2 66.4 
65-74 76.3 3 73.2 
75+ 81.3 4 75.6 

Type of 
Locality 

Type 1 66.7 5 68.2 
Type 2 70.7 6+ 68.5 
Type 3 70.3    

 

Table 4.3 provides the variable level partial R-indicators (unconditional and conditional 

respectively) with ‘*’ denoting significantly different from zero at the 5% significance 

level for the original samples on the left hand side (columns 2,3 and 4). All variables are 

contributing to lack of representativity. There is generally more impact on the lack of 

representativity as the sample sizes get smaller. For the conditional partial R-indicators 

which control for the effects of remaining variables, the within variation of the response 

propensities in categories of variables remains large. In other words, conditioning on 

other variables, there remains a lack of representative response for the specific variable. 

In general, we see that the unconditional partial R-indicators are larger than the 

conditional partial R-indicators in the original sample for all variables. This suggests that 
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the impact of each variable is reduced when controlling for  other variables and that the 

auxiliary variables show some collinearity. 

Table 4.2: R-indicators and Coefficient of Variation (with confidence intervals) for the 

three sample  before and after targeted follow-up assuming 50% response  

Sample Response 
Rate 

Original 

Original Sample   Response 
Rate 
Final 

With Targeted  
Follow-up Non-response 

(Response Rate 50%) 
R-

indicator 
Coefficient of 

variation 
R-

indicator 
Coefficient 
of variation 

1:50 
n=15,074 
  

69.6% 0.871 
(0.857-
0.886) 

0.093 
(0.082- 
0.103) 

72.3% 0.904 
(0.890-
0.919) 

0.066 
(0.056- 
0.076) 

1:100 
n=7,537 
  

69.0% 0.854 
(0.834-
0.875) 

0.105 
(0.090- 
0.120) 

71.9% 
 
 

0.886 
(0.866-
0.907) 

0.079 
(0.065- 
0.094) 

1:200 
n=3,769 
  

70.1% 0.843 
(0.813-
0.872) 

0.112 
(0.091- 
0.133) 

72.8% 0.871 
(0.842-
0.901) 

0.088 
(0.068- 
0.109) 

 

We use the first scenario of the structured trial-and-error approach in Section 3.3 to 

determine characteristics of individuals to target for follow-up on non-respondents. Based 

on the variable level partial indicators, we inspect those variables where the 

unconditional and conditional values are significantly different from zero as denoted by 

the ‘*’ in the left-hand panel of Table 4.3. On the larger sample size 1:50, this check 

distinguishes the variables: number of persons in the household, type of locality, age 

group, child indicator and sex. We next inspect the categories of these variables and 

determine which categories have a significant negative unconditional partial R-indicator 

(under-represented in the original sample) and a significant conditional value. For the 

1:50 original sample (prior to the targeted follow-up of non-respondents), the category 

level partial R-indicators are presented in Table 4.4 where ‘*’ denotes significantly 

different from zero at the 5% significance level. 
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Table 4.3: Variable level Partial R-indicators (‘*’ denotes significance at the 5% 

significant level)   for the sample  before and after targeted follow-up assuming 50% 

response  

Variable Original Sample   With Targeted Follow-up 
(50% Response rate) 

1:50 1:100 1:200 1:50 1:100 1:200 
Unconditional Variable Partial R-indicators 

Persons in HH 0.032* 0.040* 0.051* 0.027* 0.034* 0.048* 
Type of Locality 0.011* 0.014* 0.020* 0.010*  0.011 0.019* 
Age Group 0.047* 0.054* 0.055* 0.033* 0.035* 0.039* 
Children in HH 0.030* 0.033* 0.036* 0.014* 0.017*  0.021* 
Income Group 0.018* 0.031* 0.027* 0.011* 0.026*  0.021* 
Sex 0.019* 0.012* 0.013 0.010* 0.018* 0.015* 

Conditional Variable Partial R-indicators 
Persons in HH 0.029*  0.033* 0.047*  0.029* 0.032* 0.046* 
Type of Locality 0.011* 0.013* 0.021*  0.009* 0.010*  0.020* 
Age Group 0.046*  0.050* 0.052*  0.037* 0.037*  0.041* 
Children in HH 0.017*  0.017* 0.014 0.008* 0.009  0.004 
Income Group 0.005 0.022* 0.016*  0.007 0.022* 0.017* 
Sex 0.017* 0.011* 0.010 0.009* 0.017* 0.016* 
 

As can be seen in Table 4.4, the categories that meet the requirements are: males, persons 

aged between 18 and 34, persons living in 2-person households, persons living in 

households without children and the first type of locality. We then form 32 strata defined 

by cross-classifying the following sets: {males, females}×{aged 18-34, other}×{2 

persons, other}×{no children, has children}×{locality type 1, other}. The unconditional 

categorical partial R-indicators were calculated for each of the new strata and the strata 

were then sorted by their p-value. For the 1:50 sample, the high and significant p-values 

on the under-represented strata were obtained for the  following sets in order of 

significance: {males, 18-34, 2 persons, no children, type 1}; {males, 18-34, 2 persons, no 

children, not type 1}; {males, 18-34, not 2 persons, no children, type 1}; {males, 18-34, 

not 2 persons, no children, not type 1}. The number of non-respondents to target for 

follow-up in these four strata are 838 (5.6%), 421 (5.6%) and 188 (5.0%) for the 1:50, 
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1:100 and 1:200 samples respectively. We assume that after efforts to convert the non-

respondents to respondents, we achieve a 50% response rate in the follow-up. For the 

simulation study, half of the non-respondents in the four strata were randomly converted 

to respondents. This increased the response rates by approximately 2.7%, as can be seen 

in column 5 of Table 4.2. In addition, Table 4.2 presents the R-indicators and 

Coefficients of Variation after the targeted follow-up of non-response assuming a 50% 

response rate (columns 6 and 7). There is a clear and significant increase in the R-

indicator and a decrease in the Coefficient of Variation after the non-response follow-up 

assuming a 50% response rate.  

We turn now to Table 4.3, containing the variable level partial R-indicators, and focus on 

the  right side of the table (columns 5, 6 and 7) for the 50% responding targeted follow-

up on the non-response. Based on the results, we generally see the same trend as the R-

indicators with a reduction in the variable level partial R-indicators, although some 

collinearity has remained. In the 1:200 smaller sample size we see that the variable sex, 

which is a dichotomous variable, has gone from non-significant to significant, following 

the targeted response for both conditional and unconditional partial R-indicators. For the 

categorical level partial R-indicators (not shown here), there is an overall reduction, 

following the targeted response, and many categories that have become non-significant, 

following the targeted response.    
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Table 4.4: Category  level (Unconditional and Conditional) Partial R-indicators (‘*’ 

denotes significance at the 5% significance level)   for the 1:50 original sample    

Variable Category Uncond. 
Partial 

Cond. 
Partial  

Variable Category Uncond. 
Partial 

Cond. 
Partial  

 Children 
in HH 

None -0.015* 
 

0.012* 
 

Locality 
Type 

Type 1 -0.010* 0.009* 

1+ 0.026* 
 

0.013* 
 

Type 2 0.005* 0.004* 

Age 
Group 
  
 

15-17 0.020* 0.005* Type 3 0.001 0.005 
18-21 -0.017* 0.021* Sex Male  -0.014* 0.013* 
22-24 -0.015* 0.013* Female 0.013* 0.012* 
25-34 -0.016* 0.011* Persons in 

HH 
1 -0.007 0.012* 

35-44 -0.005 0.011* 2 -0.015* 0.008* 
45-54 0.005 0.007* 3 0.007 0.007* 
55-64 0.002 0.009* 4 0.025* 0.022* 
65-74 0.018* 0.020* 5 -0.003 0.008* 
75+ 0.026* 0.026* 6+ -0.005 0.008* 

 

The conclusion from this simulation study is that even with a small increase of response 

rate,   albeit targeted to those non-respondents contributing to the lack of representativity, 

we are able to improve the representativeness of the data. This means that less 

adjustments are needed to correct for non-response bias, leading to smaller variation in 

sampling weights and increased efficiency. 

 

5. An application to the Crime Victimisation Survey 

In this section, we show an application to the 2011 Dutch Crime Victimisation Survey 

(CVS). Within the 2011 CVS a large survey mode experiment was conducted that allows 

us to investigate various sequential mixed-mode adaptive survey designs. This 

experiment is described and analysed in detail in Schouten et al (2013). In the 

construction of the adaptive survey designs, we adopt two scenarios: no learning period 

and a long learning period. 
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The design of the experiment was as follows: A sample of 8800 persons was randomly 

assigned to one of four sequential mode strategies: Web followed by face-to-face, mail 

followed by face-to-face, telephone followed by face-to-face and face-to-face followed 

by face-to-face. The last strategy, face-to-face followed by face-to-face, is not a mixed-

mode strategy but was added to evaluate time stability of CVS key variables. The 

experiment was designed to decompose mode effects into mode-specific selection and 

mode-specific measurement bias with face-to-face as the benchmark mode. In order to do 

so, both respondents and nonrespondents to the first phase (Web, mail, telephone or face-

to-face) received the second phase (face-to-face) in which the first key sections of the 

CVS questionnaire were repeated. At the first phase, persons were not aware of a second 

phase. In Schouten et al (2013) it was concluded that the mode of the first phase did not 

impact the size and composition of response to the second phase. Furthermore, the 

answers to the key CVS questions in the second phase could not be predicted by the 

mode of the first phase. We view the two phases, therefore, as a sequential mixed-mode 

design.  

In the application, we consider two strategies: Web to face-to-face and mail to face-to-

face. These two strategies come up naturally in mixed-mode designs where cheaper 

survey modes are tried first. We assume that there is insufficient budget to allocate all 

nonrespondents to face-to-face and we investigate what persons to allocate to the face-to-

face second phase. In the following, we abbreviate face-to-face to F2F. 

The evaluation of representativeness and the construction of strata for the second phase is 

done using six socio-demographic registry variables: gender (male, female), age (15-25, 

25-35, …, 65-75, 75+), employment (yes, no), urbanization of residence (not, little, 
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moderate, strong, very strong), income in Euro’s (<3K, 3-5K, 5-10K, 10-15K, …, 25-

30K, >30K), ethnicity (native, western non-native, non-western non-native), and 

registered landline phone number (yes, no). These variables have been linked to a wide 

range of survey datasets at Statistics Netherlands as they relate generally to survey 

variables and are used in weighting adjustments and publication tables. Particularly, 

gender, age, urbanization and registration of a landline phone number relate strongly to 

key CVS variables: victimization, perception of safety, judgment of police performance 

and perception of neighbourhood problems. Table 5.1 presents the response rate, R-

indicator and coefficient of variation for various strategies given the specified auxiliary 

variables. The last row of table 5.1 presents the values for the strategy with two F2F 

phases. The response rate of this strategy is close to 70% and the R-indicator is around 

0.80. In the following, we take the resulting coefficient of variation of 0.160 as the target. 

We believe that two F2F phases represent what can be achieved with reasonable effort; 

beyond this effort the survey gets exceptionally expensive. We use the F2F → F2F 

coefficient of variation as internal benchmark. 

Rows 2, 3, 6 and 7 of table 5.1 present the indicator values for Web only, Web to F2F, 

mail only and mail to F2F. The response rate for Web only is by far the lowest, but the R-

indicator is similar to the benchmark strategy. However, resulting from the low response 

rate the coefficient of variation is much higher. For mail, the picture is somewhat 

reversed: the response rate is relatively high but the R-indicator is very low. As a 

consequence, again, the coefficient of variation is much higher and even higher than that 

of the Web only strategy. When the F2F second phase is added, then the response rates 
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increase considerably, for mail it is now close to that of the benchmark strategy. The R-

indicator and the coefficient of variation become similar to that of the benchmark strategy.   

Table 5.1: Response rate, R-indicator, coefficient of variation and costs for various 

strategies in the 2011 CVS experiment. Standard error approximations are given within 

brackets. Costs are given in 1000’s of Web sample unit costs. 

Strategy Response rate  R-indicator  CV             Cost 
Web 28.7% (1.0%) 0.806 (0.019) 0.368 (0.034) 2.2 
Web → F2F 57.9% (1.1%) 0.829 (0.022) 0.168 (0.019) 49.1 
Web scenario 1 39.7% (1.0%) 0.808 (0.021) 0.267 (0.026) 20.0 
Web scenario 2 43.6% (1.1%) 0.846 (0.021) 0.206 (0.025) 29.1 
Mail 49.0% (1.1%) 0.738 (0.020) 0.283 (0.020) 8.8 
Mail → F2F 66.0% (1.0%) 0.812 (0.021) 0.157 (0.016) 42.3 
Mail scenario 1 54.1% (1.1%) 0.855 (0.022) 0.159 (0.020) 18.7 
Mail scenario 2 59.5% (1.1%) 0.878 (0.022) 0.129 (0.019) 26.8 
F2F → F2F 67.9% (1.0%) 0.801 (0.021) 0.160 (0.015) 91.3 
 

We assume that the available budget is not sufficient to cover a second phase for all 

nonrespondents in the first phase. The costs for approaching one CVS sample person 

through mail is approximately four times higher than through Web and the costs for F2F 

are approximately 30 times higher. The last column of table 5.1 gives the costs per 

strategy in thousands of sample unit costs for one Web approach. The F2F to F2F 

strategy is approximately 45 times more expensive than Web only. For ease of 

demonstration, suppose that the available budget is one third of the expensive F2F to F2F 

strategy, i.e. 30.4. This implies there is budget to allocate 940 cases to F2F after a Web 

first phase and 720 cases after a mail first phase. The full F2F strategies for Web and mail 

cost, respectively, 49.1 and 42.3, and are too expensive. 
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Table 5.2: Variable-level unconditional and conditional partial R-indicators for various 

strategies in the 2011 CVS experiment. (p-value: * = below 0.1%, † = below 1% , # = 

below 5%). 

 Unconditional Conditional 

Phase 1 Phase 1 and 2 Phase 1 Phase 1 and 2 

Gender Mail 0.024 # 0.014 0.040 * 0.024 # 
Web 0.020 # 0.003 0.001 0.007 

Ethnicity Mail 0.077 * 0.058 * 0.043 * 0.033 * 
Web 0.039 * 0.047 * 0.022 † 0.021 # 

Income Mail 0.067 * 0.056 * 0.056 * 0.047 * 
Web 0.077 * 0.046 * 0.053 * 0.032 † 

Urbanization Mail 0.026 # 0.026 # 0.014  0.015  
Web 0.015 0.053 * 0.014 0.034 * 

Age Mail 0.087 * 0.051 * 0.064 * 0.037 * 
Web 0.061 * 0.036 * 0.041 * 0.022 # 

Phone Mail 0.038 * 0.027 † 0.016 0.011 
Web 0.029 * 0.046 * 0.016  0.026 † 

 

We adopted two extreme scenarios. The first scenario is that of a one-time only survey or 

a low frequency survey in which there is no time to learn and to perform a full F2F phase 

2. Under this scenario, a decision to allocate nonrespondents to F2F has to be based on 

the Web and mail phase 1 responses only. The second scenario is that of a continuous 

survey in which budget can be invested to perform a pilot with a full F2F second phase. 

Under this scenario, a decision to allocate nonrespondents can be based using the 

responses to both phases. Table 5.1 includes the indicator values of the adaptive survey 

designs that are constructed under the two scenarios (rows 4 and 5 for Web and rows 8 

and 9 for mail). We constructed the designs following the steps of section 3.3. For the 

first scenario, four categories turned up for both Web (income groups 10-15K and 15-

20K, age group >75 years and non-western non-natives) and for mail (males, age groups 

15-25 years and 25-35 years and non-western non-natives. From these categories 

stratifications were formed and strata with significant negative unconditional values were 
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selected for follow-up; 594 cases for Web and 329 for mail. For the second scenario, we 

found four categories for Web (income group >30K, natives, persons with a registered 

phone and persons living in little or non- urbanized areas) and five categories for mail 

(income group >30K, natives, persons with a registered phone and age groups 55-65 

years and 65-75 years). From these categories again stratifications were formed and strata 

that did not have  significant negative unconditional values were deselected for follow-up; 

leaving a total of 896 for Web and 601 for mail for follow-up. For both scenarios the 

numbers of case were within the budget levels. 

Table 5.1 presents the resulting indicator values. For both scenarios, obviously, the 

response rates increases. Under scenario 1, for Web the second phase does not improve 

the R-indicator while for mail the second phase leads to an enormous increase in the R-

indicator. The coefficient of variation for mail has become similar to the target from the 

F2F to F2F design while for Web it is still higher. Under scenario 2, the R-indicator 

increases for both Web and mail and are significantly higher than for strategy F2F to F2F. 

Because of the lower response rate the coefficient of variation for Web is still higher than 

the target but for mail it is significantly lower. 

In the construction of the designs, we have concentrated ourselves on auxiliary variables. 

The important question is whether the various designs also affect the survey variables. 

Table 5.3 contains the design-weighted but unadjusted response means for designs with 

Web and mail, respectively, of five survey variables observed in phase 2: the number of 

victimizations per 100 inhabitants, the percentage victimized over the last year, a five-

point neighbourhood nuisance scale, the percentage of persons feeling unsafe at times 

and the percentage of persons being not satisfied with the police. The response means are 
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computed using the phase 2 answer to the repeated question in F2F in order to avoid 

confounding with mode-specific measurement bias. The estimates of a full F2F phase 2 

and the adaptive survey designs under scenarios 1 and 2 are tested against the Web only 

and mail only designs. For comparison also coefficients of variation are shown. The 

victimization variables show significant differences against a Web only or a mail only 

design at the 5% level, the other variables do not. Especially, the neighbourhood nuisance 

scale seems to be very robust against changes in design. There is some indication that 

decreases in the coefficient of variation coincide with significant changes in the 

victimization variables; the only design where it did not change significantly, scenario 1 

for Web, still had a relatively high coefficient of variation. Remarkably, the number of 

reported victimizations in designs with a Web first phase is a lot higher than those with a 

mail first phase, although percentages victimized are similar. 

What can we learn from this application? The application confirms that building adaptive 

survey designs based on response to a first phase can be risky. For mail the second phase 

allocation turned out right and all indicators improved, but for Web hardly any 

improvement was found; The F2F second phase helped raise response rates of some 

strata but was counterproductive on other strata. This risk reflects the lack of knowledge 

about the efficacy of the second phase which is included in the scenario where both 

phases have been conducted first. The application shows that it may be fruitful to perform 

a first pilot wave in which some investment is made in learning if and how a second 

phase improves response. After this wave the design can be optimized for subsequent 

waves and statistics for the first wave (and obviously future waves) can be based on the 

optimized design. 
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In the application we performed a structured trial-and-error approach. Under scenario 2 

where we have estimates for the response propensities for both phases, we could have 

done an advanced optimization following Schouten, Calinescu and Luiten (2013). This 

would lead to a complex non-linear, non-convex optimization problem when all variables 

and all variable interactions are included. If we would first construct stratifications for 

targeting sample cases, as we have done here, the properties of the problem are the same 

but the dimensionality would be much lower and perhaps a brute force approach where a 

lot of options are simply tried would become within reach. We have not tried this for the 

application, however. 

Table 5.3: Unadjusted response means for five CVS survey variables and coefficient of 

variation for designs with a Web or mail first phase. (p-value for test against phase 1 

response only: * = below 0.1%, † = below 1% , # = below 5%). 

Web Phase 1 Phase 1 and 2 Scenario 1 Scenario 2 
Coefficient of variation 0.368 0.168 0.267 0.206 
# victimizations per 100 26.6 30.3 26.6 30.1 
% victimized 8.1 10.7 † 8.9 10.8 † 
Nuisance scale 1.3 1.3 1.4 1.4 
% unsafe 25.5 25.4 25.6 26.9 
% not satisfied police 45.3 47.1 46.9 47.0 
 

Mail Phase 1 Phase 1 and 2 Scenario 1 Scenario 2 
Coefficient of variation 0.283 0.157 0.159 0.129 
# victimizations per 100 17.6 22.3 # 23.4 † 22.4 # 
% victimized 8.8 10.0 # 10.6 # 10.3 # 
Nuisance scale 1.2 1.3 1.3 1.3 
% unsafe 27.1 25.4 26.4 26.2 
% not satisfied police 47.8 47.5 48.0 48.1 
 

6. Discussion 

In this paper, we demonstrated how to use partial R-indicators in forming nonrespondent 

profiles and strata for adaptive survey designs. We, furthermore, presented and 
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demonstrated structured trial-and-error approaches to design adaptive survey designs, and 

we identified two extreme scenarios: a one-time only survey and a continuous survey 

with a long time horizon. In the approaches we adopted a pragmatic viewpoint in order to 

avoid complex optimization. However, the crucial ingredient to the formation of strata 

and the efficacy of adaptive survey designs is the availability of auxiliary variables from 

frame data, administrative data or paradata that are relevant to the key survey variables. 

We design and employ adaptive survey designs from the conviction that adjustment by 

design is profitable also when adjustment afterwards is applied. There are two 

motivations for this conviction: we want to reduce variation in adjustment weights by 

design and we treat proxy measures of nonresponse error as process quality indicators. 

We believe, and there now is empirical evidence, that a larger variation in response 

propensities on known variables is indicative of even higher variation in response 

propensities on other variables. 

In dividing the data collection into two phases, we assume that there is a strong 

conjecture that a second phase is needed to reduce the impact of nonresponse error. 

Although we do test indicators for their significant difference to a fully random 

nonresponse, we largely ignore the trade-off between bias and variance that needs to be 

made when taking the mean square error as the ultimate quality measure. 

To date, all approaches towards designing adaptive survey design are non-Bayesian and 

do not update response propensity distributions during data collection or from one wave 

to the other. A Bayesian approach is a promising alternative as uncertainty about adaptive 

survey design input parameters is included in a natural way, see e.g. Wagner and 

Hubbard (2013). However, such an approach requires a different framework (e.g. Schafer 
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2013 for an application to data collection monitoring), and the most challenging element 

may be how to include and model multiple but diverse key survey variables. We advocate 

that a Bayesian approach is investigated but leave it to future research to explore this 

alternative.  
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