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1 Introduction 

Outlier detection and error localization are important components of statistical data editing 
which is typically carried out during the data processing stage of a survey. Remaining outliers in 
survey data arising from rare and unique attributes appear as sample uniques on a set of cross-
classified identifying variables. Although probability sampling is a good non-perturbative 
disclosure limitation method and provides a priori protection in the data, sample uniques based 
on rare attributes have a high probability of being a population unique and therefore pose a 
high disclosure risk. To ensure the confidentiality of outliers in survey data, disclosure limitation 
strategies should include localized targeted perturbation on the microdata prior to its 
tabulation. Variables based on geographical spatial coordinates are particularly prone to being 
detected as outliers since they can easily be visualized when disseminating statistical 
information through the use of maps. Outliers also arise on other (non-spatial) variables which 
can be categorical or continuous. In general, outliers arise from multivariate relationships 
between spatial and non-spatial characteristics. 
 
In this paper, we present a small evaluation study  which focuses on sample uniques arising 
from rare and unique attributes in the US American Community Survey (ACS) transportation 
outputs. This could be extended to other outputs based on migration patterns. The spatial 
variables are trajectories defined as vectors of coordinates where the first component is the 
coordinate of place of residence (origin) and the second component is the coordinate of 
workplace (destination). An example of a rare and unique attribute in the ACS transportation 
outputs are overly long commutes to work on a non-typical means of transportation (MOT), 
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such as cycling. The outlier can be caused either by the trajectory or by the mode of transport. 
The objective  of the study was to inform and guide decisions about best practices that could be 
used for future dissemination strategies on these and other similar types of datasets by the US 
Census Bureau.  
 
The first stage of the study is to recommend a procedure for detecting outliers. The 
multivariate aspect of the survey data makes the task of identifying outliers challenging. Once 
outliers are identified, we propose a targeted disclosure limitation method to confidentialize 
the outliers. This implies that only pre-tabular methods of disclosure limitation that are applied 
directly on the microdata prior to tabulation will be considered. All resulting tabular outputs 
derived from confidentialized microdata are assumed protected against disclosure risks. The 
method needs to account for different types of variables: spatial, categorical and continuous. 
Constraints to consider when developing a pre-tabular perturbative method of disclosure 
limitation are: determining which variable(s) to perturb, preserving the logical consistency of 
the record after the perturbation and ensuring that the disclosure limitation method preserves 
the sufficient statistics of the dataset. Therefore, a disclosure limitation method specifically 
targeted for outliers, whether they are caused by spatial or non-spatial variables or both, is 
particularly challenging due to the need to ensure the statistical integrity of the data. 
  
We describe the data for the evaluation study in Section 2 based on the Public-Use file of the 
American Community Survey in the US. The outlier detection algorithm is discussed in Section 3 
and the perturbation methods that were used are described in Section 4.  Section 5 contains 
results and a brief discussion is provided in Section 6.    

2 Data 

In the investigation of outlier detection strategies and perturbation of spatial outliers, we carry 
out a small-scale simulation study   based on an artificial population produced from the 2006-
2008 combined PUMS from the American Community Survey (ACS). From this file, we selected 
records based on those living in the State of California, were employed and did not work 
outside of the US. There were 438,850 individuals in the file.  Latitude and longitude of place of 
residence and workplace were generated by adding random distances around a radius of the 
centroid of the individual’s residence and workplace PUMAs (public-use microdata area) which 
is the lowest unit of geography on the PUMS and are formed to be greater than 100,000 in the 
population. The geographical coordinates of the centroid of each PUMA were calculated 
through the GIS systems at Westat, Inc. This effectively dispersed individuals across different 
areas of the PUMA for place of residence and place of work. It is important to remember that 
this is a test dataset and that the place of residence and place of work is a result of additive 
random noise.  
 
The primary geographic variables for the place of work for the evaluation were the state, and 
the associated latitude and longitude workplace coordinates. Variables of interest for the 
detection of outliers and their disclosure protection specifically for workplace trajectories 
included economic and demographic variables, and variables of interest such as the mode of 
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transport, distance travelled and travel time. We calculate a travel distance computed by the 
latitude and longitude coordinates. The distance is computed ‘as the crow’ flies as they say, and 
therefore is computed using a straight line, and does not account for traffic flow patterns, etc. 

3 Outlier Detection 

 
An outlier is defined in terms of its deviation or inconsistency from other units in the dataset. 
Ben-Gal (2005) and the references therein provide a good introduction on outlier detection 
methods. Outlier detection methods are divided between univariate and multivariate methods 
and also can take parametric or non-parametric forms. Parametric forms assume an underlying 
model and define outliers as those observations that deviate from the model. Non-parametric 
forms are typically based on the measurement of observations using local distance metrics. 
Univariate statistical methods for outlier detection are based on confidence intervals of the 
normal distribution where multiple testing corrections, e.g., Bonferroni method, should be used 
for simultaneous testing of several outliers at once. The sample mean and sample variance are 
influenced by the presence of outliers and can be replaced by more robust estimators such as 
the median and the median absolute deviation. In multivariate outlier detection, interactions of 
different variables are examined where variables may be continuous or categorical. Statistical 
methods for multivariate outlier detection mainly rely on the Mahalanobis Distance metric 
where large values indicate outliers. This metric can be replaced by robust estimates of the 
multidimensional distribution parameters, for example mean vector replaced by median vector 
and the covariance matrix by the minimum covariance determinant (MCD) (Rousseeuw, 1985). 
 

The MCD estimator for a dataset p

n1  },...,x{x   where each  x i is a vector of p variables is 

defined by that subset },...,x{x ihi1  of h observations whose covariance matrix has the smallest 

determinant among all possible subsets of size h. The value h can be thought of as the 
minimum number of points which must not be outlying. The MCD location and scatter 
estimate: MMCD and SMCD are the arithmetic mean and a multiple of the sample covariance 
matrix of that subset: 
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The constant factor ccf  is the consistency correction factor and ensures that for multivariate 

normal data, the sample covariance estimator S is equal to SMCD. The constant factor sscf is a 

small sample correction factor to ensure that S is unbiased for small samples (Todorov and 
Filzmoser, 2009). The recommended choice for h is [(n+p+1)/2] where [.] is the greatest integer 
function. The idea is that points that are outliers will not be involved in the location and shape 
calculations. If h=n then MMCD and SMCD reduce to the sample mean and sample covariance 
matrix. Rousseeuw and van Driessen, 1999 provide an algorithm for calculating the MCD. 
 
The squared Mahalanobis distances based on p variables that follow a multivariate normal 

distribution with mean x  and sample covariance matrix S follows a c p

2  distribution. The usual 
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cutoff value for testing outliers based on the Mahalanobis distances is a quantile of the 2  

distribution, such as )975.0(2

0 pD  . However, this cutoff will not be valid if robust estimators 

are used in the robust Mahalanobis distances. In this case, Maronna and Zamar (2002) propose 

to use a transformation of the cutoff value as follows: 
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where iRD  is the robust distance for record . 

We compared the Mahalanobis distances and robust Mahalanobis distances to some standard 
methods for outlier detection used in selective statistical data editing. From this study, it was 
clear that standard methods of selective editing often assume normal distributions and 
generally perform best in the case of univariate distributions. It was clear that Mahalanobis 
distances work best to detect outlier trajectories to work by taking into account the spatial 
characteristics of the multivariate data. To calculate the Mahalanobis distances we use two 
continuous variables: minutes to work and distance travelled. Due to the large number of 
outliers, the multivariate distribution of these variables deviated from the Normal assumption 
and therefore we determined that the robust Mahalanobis distances is the preferred option for 
spatial outlier detection. 
 
After calculating the robust Mahalanobis distances based on minutes to work and distance 
travelled, we carried out a large number of robust regression analyses to determine which 
explanatory variables are highly predictive of the distance travelled. The dependent variable for 
the regression analysis was the robust Mahalanobis distances and the independent variables 
were categorical variables transformed into dummy variables. The aim was to determine 
homogenous sub-groups within which we would calculate the robust Mahalanobis distances to 
test for outliers. The independent variables that were highly associated with the robust 
Mahalanobis distances were: mode of transport, sex, earnings and occupation. The sub-groups 
were collapsed to ensure that a minimum of 20 individuals were present in each sub-group. We 
deleted all individuals from the dataset where there was a missing value in either minutes to 
work or distance to work for this study.   
 
A SAS program was written that includes a pre-developed SAS macro called ‘Robcov’ Version 
1.3-2 (20 March 2007)1 that was written by Michael Friendly. The program calculates the robust 
Mahalanobis distances within sub-groups based on the minimum covariance determinant 
(MCD) estimator. The program first calculated the cross- classification of the variables defining 
the sub-groups and then proceeds to collapse neighboring sub-groups to ensure that there are 
at least 20 individuals in each sub-group. The program then labels the final sub-groups 
sequentially 1, 2, 3, etc. The macro works through each sub-group separately and calculates the 
Mahalanobis distances and robust Mahalanobis distances. A flag is assigned to each record, 
giving a value of 1 if the robust Mahalanobis Distance squared is larger than the critical value, 
otherwise it has a value of 0. 

                                                 

1 http://euclid.psych.yorku.ca/SCS/sasmac/robcov.html (current as of February 26, 2013) 

http://euclid.psych.yorku.ca/SCS/sasmac/robcov.html
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4 Perturbation Methods 

Once outliers have been detected in the survey microdata, they need to be targeted for a pre-
tabular disclosure limitation method. Pre-tabular methods include some or all of the following: 
coarsening and suppression of variables, adding noise to continuous variables, misclassification 
of categorical variables, parametric or non-parametric delete-impute methods. These methods 
are well documented (see for example, Rubin, 1993, Willenborg and DeWaal, 2001, Reiter, 
2005 Oganian  and Karr, 2006, Shlomo, 2007). We therefore focus on pre-tabular perturbative 
methods that can be specialized and adapted to the protection of spatial coordinates. 
 
Wang and Reiter (2011) focus on the confidentiality protection of a geographical variable 
defined by latitude and longitude. They propose the perturbation of the latitude and longitude 
by replacing original values with imputations based on random draws from a posterior 
predictive distribution using multiple imputation techniques. Domingo-Ferrer and Trujillo 
(2011) discuss the confidentiality protection of trajectories that have a time-stamp using 
clustering k-anonymity techniques and data swapping.  Krenzke et al. (2011) discuss the 
protection of origin-destination tables from the American Community Survey planned 
transportation products through the perturbation of attributes. They compare disclosure 
limitation methods under the delete-impute approach using a semi-parametric model-assisted 
method, a parametric model-based method and a constrained hot-deck method.  
 
In this study, there are several objectives to the perturbation process that have been developed 
and evaluated. A general goal of the perturbation process was to change the residence of the 
person, while retaining the workplace. The reason for not changing the workplace was that if a 
workplace is changed, the new area may not offer the industry or occupation of the individual. 
In addition, we attempted to retain the relationship between distance and length of commute 
(minutes). 
 
We calculated the distance to work using the following SAS statement where POW denotes 
place of work:  
 
DistanceToWork = geodist (latitude,longitude,POW_latitude,POW_longitude,'DM'); 
 

To reduce the size of the test dataset, we included only those non-outliers that had a high level 
of consistency between the distance travelled to work and the minutes to work, resulting in 
283,423 records. We then ran the outlier detection program (see Section 3) and based on the 
robust Mahalanobis distance algorithm identified 60,007 outliers (21.2%). From this set of 
outliers, we removed outliers with a mode of transport of ‘other’ resulting in 59,080 (20.8%) 
outliers.  

4.1    The Coherence Function 

The coherence function quantifies the level of consistency and plausibility for an individual 
trajectory from place of residence to place of work. The function takes into account the mode 
of transport, the distance travelled to work and the number of minutes of travel. As an 
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example, an individual who traveled 100 miles in 2 hours by car should have a large coherence 
function, while another individual who traveled 50 miles in 2 hours by walking would have a 
small coherence function. In other words, the coherence function aims to quantify the 
plausibility of the observed values when taken in a multivariate setting.  
 
To calculate the coherence function, we first define the maximum and minimum velocity for 
each mode of transport based on the set of non-outliers in the dataset after the determining 
outliers (see Section 3). We calculate for all non-outliers having the same mode of transport, 
the number of miles travelled divided by the number of minutes to travel, i.e. the number of 
miles per minute, and multiply this value by 60 to obtain a standard velocity measure to work 
of miles per hour. We then find the maximum/minimum computed velocity and define this as 
the maximum/minimum coherent velocity for that mode of transport. The formula for the 
velocities and the mean velocity at their initialization are:  

maxVelocitym = max
distr

timer
´60 | "r Î datanonOutliers, rmodeTransport =m

ì
í
î

ü
ý
þ

minVelocitym = min
distr

timer
´60 | "r Î datanonOutliers, rmodeTransport =m

ì
í
î

ü
ý
þ

(1) 

meanVelocitym =
maxVelocitym +minVelocitym

2

ì
í
î

ü
ý
þ

 

Once we obtained these velocities for each mode of transport, we calculated the coherence 
function for each of the individuals in the dataset by computing the deviation of the distance 
travelled from the distance travelled according to the mean velocity in (1), and compared that 
deviation to the deviation of the maximum distance travelled (based on the non-outliers) as 
calculated in the maximum velocity in (1) from the distance travelled according to the mean 
velocity in (1). Figure 1 shows the algorithm which outlines the calculation of the coherence 
function. 
 

 
Figure 1. Algorithm of the Coherence Function 
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The parameter α in the algorithm presented in the algorithm in Figure 1 is used to smooth the 
borders of the coherence function and introduce ‘fuzziness’ into the function. Otherwise, all 
outliers outside of the minimum and maximum velocities would have zero coherence and it 
would not be possible to determine whether it is improving as we maximize the objective 
function. A good practice would be to use α = 0.5 because, by doing that, we assign a value of 
0.5 to the borders of the coherent area, allowing the outliers to have a value below 0.5, but 
different than 0. Figure 2 shows a graphical explanation. 
 
The coherence function assigns high coherence to the individuals within the mode of transport 
whose travelled distance is close to the computed mean, and low coherence to the individuals 
whose travelled distance is far from this mean. Finally, this function will be used as an objective 
function to guide the perturbation algorithms where we aim to obtain a higher coherence for 
the outliers. 

 
Figure 2. Graphical explanation of all terms involved in coherence function algorithm (Figure 1).  

The upper, middle, and lower lines represent the max, mean, and min velocities respectively. In addition, the left point represents an outlier, 

and the right point represents a non-outlier. 

 
4.2   Record Swapping Method 
In this section, we present the algorithm used to swap place of residence for the outliers using 
the coherence as the objective function. Under this approach, we only use the outlier 
individuals identified in the dataset. We aim to pair outliers working in different workplaces in 
such a way that by swapping their place of residence, we increase the coherence function of at 
least one of the outliers and for the other outlier we either increase the coherence function or 
it remains the same. We carry out the algorithm iteratively, continuing to improve the overall 
coherence function in the data until it stabilizes. 
 
The swapping algorithm is carried out separately within classes defined by the mode of 
transport, sex and age group. Any pair of outliers selected for swapping their place of residence 
will match on the three fixed control variables (mode, sex, and age group). Within each class, 
we split the outliers into groups defined by their workplace. We pair each outlier to all the 
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other outliers in different workplaces and calculate their coherence function based on 
swapping the place of residence. If one of the two outliers receives more coherence than it 
already had in the previous stage and the other outlier does not have a decrease in its 
coherence, we swap the place of residence (i.e. the latitude and longitude of place of residence, 
PUMA and any other geographical information in the dataset). This process is carried out 
iteratively. As the number of iterations increases, the coherence also increases but at a lower 
rate for each iteration. The process stops when the improvement of the coherence is less than 
a pre-set threshold given as a parameter for the method. 
 
Figure 3 presents a graphical explanation of the swapping algorithm. At the top of the figure, 
we present the initial state with two outliers, their corresponding workplaces, and the borders 
that mark the coherent area around each workplace. On the bottom half of the figure we 
present the final state after the swapped place of residences between the two outliers. As can 
be seen, the point x is not an outlier anymore, while point y is still an outlier but with a much 
better coherence. In the following iterations, the coherence can continue to improve until it 
reaches the state of a non-outlier. The algorithm depends on a large pool of outliers since only 
the outliers are considered for swapping. 
 

 
Figure 3. Graphical Explanation of the Record Swapping Algorithm 

 
4.3   Hot Deck Method 
The second proposed algorithm is based on imputing the place of residence (latitude, longitude, 
PUMA) of an outlier individual by the place of residence of a non-outlier that belongs to the 
same class. As defined for the swapping method, classes are created by mode of transport, sex 
and age group. 
 
Figure 4 shows a graphical explanation of this method. Whilst for the swapping algorithm we 
were searching for a donor from other workplaces, in this case we focus only on a single 
workplace. We select a donor that is a non-outlier within the same class and having the same 
workplace as the outlier. We then impute the place of residence of the outlier with the donor’s 
place of residence. 
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Figure 4. Graphical Explanation of the Hot Deck Algorithm 

The key point of this method is the donor selection criteria. We propose two different 
approaches for selecting the donor. In the first approach we consider candidate donors whose 
distance to work are within the coherence range of distances given by the coherence function. 
We then select the donor that maximizes the coherence, i.e. the candidate donor whose 
distance to work is closer to the mean of the given outlier’s coherent distances range taking 
into account the outlier’s travelled minutes. This hot deck approach can only be applied to 
workplaces with more than one individual. If a workplace only has one individual in a given class 
it is not possible to find a donor in the same workplace. In that case, it is ignored and is marked 
as an isolated individual. Following the same reasoning, it can be deduced that the higher 
number of individuals in a workplace, the more likely it is to find good donors for the outliers. In 
the second approach we do not use the coherence function. Instead, the donor is selected as 
the non-outlier in the same workplace having the most similar travelled minutes to work to the 
outlier’s minutes to work, i.e. a nearest-neighbor approach.  Using this approach, we allow 
outliers to receive place of residence where they have a distance to work that may still not be 
coherent for them but will improve their coherence by controlling for the minutes to work. 
Therefore, this approach is less strict than the first approach  while improving the overall 
coherence of the dataset. 

5   Results 

We first look at the remaining disclosure risk in the dataset following the methods of 
perturbation and the changing of place of residence by re-assessing the number of outliers in 
the dataset. It can be seen that the swapping method was able to correct fewer outliers than 
the hot deck methods. This is expected since it is very difficult to correct a large number of 
outliers based solely on the sub-set of outliers. However, as will be seen, the swapping method 
had the lowest information loss. The two approaches of the hot deck method are both able to 
correct approximately twice as many outliers compared to the swapping method. This is due to 
the fact that we are using non-outliers’ data to correct the outliers and there is a much larger 
pool of donors. The last thing to notice is that in all cases of perturbation (swapping and hot-
deck) there are non-outliers that became outliers. The outlier detection algorithm is based on 
the distribution of individuals within sub-groups (see Section 3). It is possible that based on the 
new set of place of residence following the perturbation, the distributions were changed in 
such a way as to be less consistent compared to the original distributions and this produced 
new outliers. However, the number of non-outliers that were defined as outliers following the 
perturbation was much less than those outliers that were corrected to non-outliers. 
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Table 1 presents the results of the outlier detection algorithm before and after each of the 
methods of perturbation. The percent of the remaining outliers after the perturbation was 
78.7% under the record swapping, 60.0% under the hot-deck and coherence function and 
60.2% under the hot-deck and nearest neighbor of minutes to work. 
 
We next look at some utility measures for the perturbation methods. The number of individuals 
who had their PUMA changed in the dataset due to the perturbation were: Swapping Method: 
56,562 individuals; Hot Deck Method (Minutes): 53,945 individuals; Hot Deck Method 
(Coherent): 53,181 individuals. We cross the PUMA geography (which is the lowest geography 
available in the PUMS) with other variables to assess bivariate counts before and after 
perturbation. We calculate two distance metrics where freqij is the original count in row i and 
column j and freq’ij is the perturbed count: 
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Table 1. Number of Outliers Before and After Perturbation Methods 

 
Original 
Outliers 

Total Outliers after Swapping Outliers after HD 
(Coherence Measure) 

Outliers after HD 
(Minutes) 

Yes No Yes No Yes No 

Yes 59,080 
(20.9%) 

42,788 
(92.0%) 

16,292 
(6.9%) 

27,099 
(76.2%) 

31,981 
(12.9%) 

28,123 
(79.3%) 

30,957 
(12.5%) 

No 224,,343 
(79.2%) 

3,731 
(8.0%) 

220,612 
(93.1%) 

8,456 
(23.8%) 

215,887 
(87.1%) 

7,321 
(20.7%) 

217,022 
(87.5%) 

Total 283,423 
(100%) 

46,519 
(100%) 

236,904 
(100%) 

35,555 
(100%) 

247,868 
(100%) 

35,444 
(100%) 

247,979 
(100%) 

 
Bivariate counts were crossed with the following variables: AGE9 {recoded: young; middle; 
elderly} AGEP {individual ages top coded at 99}, SEX {male; female}, OCCUPATION {recoded: 
managers; professionals; salaried employees; others}, EARNINGS {recoded: low; medium; high; 
highest}, MODE OF TRANSPORT {recoded: car, motorcycle; bus, taxi, ferryboat; subway, train; 
cycle; walk; home, other}. Table 2 provides the results of the distance metrics. It can easily be 
seen that the hot deck methods perturb the bivariate counts more than the swapping method. 
This is also true when crossing PUMA with those variables that were used as the control 
variables (SEX, AGE9, MODE). This happens because in the swapping algorithm we are not 
changing the PUMA distribution of values inside a class. We are only changing the position of 
the values but the marginal frequency for each PUMA value is always the same. However, in 
the case of the hot deck method these marginal distributions are actually changed because we 
are copying the values of the donors and deleting the values of the receivers. These changes on 
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the marginals impact on the bivariate frequencies for all variables, including the control 
variables. 
 

Table 2. Distance Metrics under the Swapping Method, the Hot-Deck Method Based on the 
Coherence Function and the Hot-Deck Method based on nearest Neighbor of Minutes 

 
Bivariate Variables 

Crossed with 
PUMA 

Normalized Absolute Difference   Normalized Hellinger’s Distance   

Swapping HD Minutes HD 
Coherence 

Swapping HD Minutes HD Coherence 

AGE9 0 0.109 0.095 0 0.154 0.134 

AGEP 0.048 0.119 0.107 0.059 0.166 0.147 

SEX 0 0.113 0.095 0 0.161 0.140 

OCCUPATION 0.094 0.134 0.125 0.164 0.215 0.203 

EARNINGS 0.024 0.104 0.089 0.029 0.148 0.129 

MODE 0 0.104 0.087 0 0.154 0.131 

6 Conclusion 

Based on the small evaluation study, the results are inconclusive. It is clear that record 
swapping provided the lowest information loss, especially with respect to the preservation of 
bivariate counts of the swapping variable and other control variables. However, the record 
swapping method only corrected 21.3% of the outliers in the dataset, while the hot-deck 
methods corrected approximately 40.0% of the outliers. On the other hand, the hot-deck 
method   transformed more non-outliers to outliers than the record swapping. Record 
swapping provided higher utility in terms of the distance between original and perturbed 
bivariate counts, especially for those counts that were formed from the control variables used 
to define the strata within which the perturbation was carried out.   The recommendation 
would be to carry out both methods, starting with the record swapping and then proceeding to 
the hot-deck method on the remaining outliers.  Ultimately, it would be up to the policy makers 
to determine the thresholds as to how much perturbation should be carried out in the data.  
In this evaluation study we did not take into account the survey weights since these would have 
to be recalibrated in any case due to the change in place of residence. It is clear however that 
using the calibration variables as control variables, such as age group and sex, we are able to 
preserve the original sampling weights better under the record swapping method compared to 
the hot-deck method. 
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