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Abstract  

 

Statistical agencies are considering making more use of the internet to disseminate census tabular 

outputs through on-line flexible table generating servers that allow users to define and generate their 

own tables. The key questions in the development of these servers are what data should be used to 

generate the tables and what statistical disclosure control (SDC) method should be applied. For 

flexible table generating, the server has to measure the disclosure risk in the table, apply the SDC 

method and then reassess the disclosure risk. SDC methods may be applied either to the underlying 

data used to generate the tables and/or to the final output table generated from original data. Besides 

disclosure risk, the server should provide measures of information loss comparing the perturbed table 

to the original table.  In this paper, we examine the development of a flexible table generating server 

and compare different SDC methods. We propose measures for disclosure risk and data utility that are 

based on Information Theory.   
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1. Introduction 

Driven by demand from policy makers and researchers for specialized and tailored census 

tables, many statistical agencies are considering using flexible table generating servers that 

allow users to define and generate their own tables.  The United States Census Bureau and the 

Australian Bureau of Statistics have developed such servers for disseminating census tables.  

Users access the servers via the internet and define their own table from a set of pre-defined 

variables and categories typically from drop down lists.  

 

The key questions in the development of these servers are what data should be used in the 

background for producing the tables and what method of statistical disclosure control (SDC) 

should be applied.  The Computer Science literature has contributed much research on the 

theory of guaranteeing privacy in outputs from query-based systems based on perturbative 

SDC methods under specific parameterization (Dinur and Nissim, 2003) which can inform 

these new modes of data dissemination. 

 

For the dissemination of census tables from European member states, Eurostat is developing a 

table generating server through the European Census Hub Project. Each member state is 

required to produce a fixed set of pre-defined multi-dimensional tables (hypercubes) 

containing their country’s census counts: 19 hypercubes at the geography level of LAU2  and 

over 100 hypercubes at the geography level of NUTS2, cross- classified with as many as  six 

other census variables. The hypercubes will then be used as the underlying data behind the 

flexible table generating server. The platform will allow comparative tables across member 

states and the combination of census data from multiple member states. The fixed set of 

hypercubes allow harmonization of census results and have the additional advantage that they 



provide  some a priori protection against disclosure since no data below the level of the cells 

of the hypercube can be released.   

 

When selecting the SDC method for a flexible table generating server, there are two 

approaches: apply SDC to the  underlying data so that all tables generated in the server are 

deemed safe for dissemination (pre-tabular SDC), or produce tables directly from original 

data and apply the SDC method to the final tabular output (post-tabular SDC). Although 

sometimes a neater and less resource intensive for data from a single source, the pre-tabular 

approach is problematic for the dissemination of European Census data for two reasons. 

Firstly all member states would have to agree on a common SDC method in order to provide 

consistent hypercubes across member states. For example, if one member state employs a 

rounding algorithm whilst another member state employs cell suppression, there will be little 

utility in a table that is generated based on both member states’ data. Secondly, when 

combining data which has been separately disclosure controlled we compound  the SDC 

impact,  for example aggregating rounded counts exacerbates the data utility impact and 

overprotects the data. With the second approach of protecting only the final tabular output, 

SDC methods are not compounded.  

  

For flexible table generating, the server has to measure the disclosure risk in the original table, 

apply an SDC method and then reassess the disclosure risk. There are two types of disclosure 

risks in census tables: identity disclosure where small cell counts may lead to an 

identification, and attribute disclosure where rows/columns contain empirical  (real) zeros and 

only a small number of cells are non-zero. This leads to the ability to learn attributes about an 

individual or group of individuals. Differencing   tables generated through the server can lead 

to residual tables that are more susceptible to the above disclosure risks and to the 



reconstruction of individual records. After the table is protected, the server should also 

calculate data utility impact of the disclosure control by comparing the perturbed table to the 

original table.    

  

In this paper, we compare both pre- and post-tabular SDC methods. The comparison is made 

through disclosure risk and data utility measures which must be able to be calculated ‘on-the-

fly’ within the table generating server. We propose new disclosure risk and data utility 

measures based on Information Theory (IT).  

 

Section 2 describes the hypercube that will be used in our simulation study. The SDC 

methods for the study are described in Section 3 and the development of a table generating 

server is discussed in Section 4. The disclosure risk and data utility measures are presented in 

Section 5. The results of the comparison of SDC methods are presented in Section 6 with a 

discussion in Section 7. 

2. Simulation Hypercube 

To investigate and compare SDC methods for a table generating server, we simulate a 

hypercube with an underlying population of 1,500,000 individuals for two NUTS2 regions. 

The variables defining the hypercube follow the Eurostat specification for one of the 

hypercubes:     

 

 NUTS2 Region - 2 regions   

 Gender – 2 categories 

 Banded age groups – 21 categories 

 Current Activity Status – 5 categories 



 Occupation – 13 categories 

 Educational attainment – 9 categories 

 Country of citizenship – 5 categories 

 

From the UK Census 2001, we calculated cell proportions from available published tables, 

multiplied the proportions by the 1,500,000 individuals in the population and calculated all 

cross-classified proportions of the table through iterative proportional fitting to produce the 

final synthetic hypercube. The hypercube used in the simulation study had 245,700 cells. The 

distribution of cell counts is skewed with a large proportion of zero cells as seen in Table 1. 

 

The distributions in the synthetic hypercube were compared to those obtained from real 

hypercubes produced by member states Italy and Estonia at the NUTS2 region level according 

to the above specification and similar distributions were obtained.  

 

Table 1: Distribution of Cell Counts in the Synthetic Hypercube 

 

Cell Value Number of Cells Percentage of Cells 

0 226,939 92.36% 

1 4,028 1.64% 

2 2,112 0.86% 

3-5 2,964 1.21% 

6-8 1,664 0.68% 

9-10 720 0.29% 

11 and over 7,273 2.96% 

Total 245,700 100.00% 

 

3. Statistical Disclosure Control Methods  

In this section, we describe SDC methods for protecting the hypercubes: record swapping, 

semi-controlled random rounding and a probabilistic perturbation mechanism. From each of 

the disclosure controlled hypercubes, we generate an output table and compare the SDC 



methods through disclosure risk and data utility measures. The comparison will also include 

the case where the SDC is applied directly on the output table that is generated from the 

original hypercube.  

3.1  Record Swapping 

Record swapping is based on the exchange of values of variable(s) between similar pairs of 

population units (often households).  In order to minimize bias, pairs of population units are 

typically determined within strata defined by control variables, such as a large geographical 

area, household size and the age-sex distribution of individuals in the households.  In addition, 

record swapping can be targeted to high-risk population units found in small cells of census 

tables. In a census context, geographical categories are often swapped. Swapping places of 

residence attempts to minimize bias on the assumption that place of residence is independent 

to other target variables (conditional on the control variables). Also, place of residence is 

itself a highly visible variable so swapping this variable has a double benefit. In addition, if 

one swaps between low levels of geography but within higher levels of geography then at the 

higher aggregations of geography, marginal distributions are preserved. For more information 

on record swapping, see Dalenius and Reiss, 1982, Fienberg and McIntyre, 2005 and Shlomo, 

2007. 

 

For this study, we carried out random record swapping at the individual level. In addition, to 

keep the study simple, a random sample of 5% of the individuals was selected in each NUTS2 

region. The selected individuals were paired randomly with other individuals in different 

LAU2 geographies within the NUTS2 region, and the LAU2 geographies swapped between 

them. This produced a total of 10% of the individuals in each NUTS2 region having their 

LAU2 geography variable swapped.  



3.2 Semi-Controlled Random Rounding  

The most common post-tabular method of SDC for Census frequency tables is based on 

unbiased random rounding. The entries of the table   are first converted to residuals of the 

rounding base  ,       . Let          be the largest multiple k of the base   such that 

     for an entry  . In this case,                  . For an unbiased rounding 

procedure,   is rounded up to            with probability 
      

 
 and rounded down to 

         with probability    
      

 
 . If   is already a multiple of  , it remains unchanged. 

 

In general, each small cell is rounded independently in the table, i.e. a random uniform 

number   between 0 and 1 is generated for each cell. If   
      

 
 then the entry is rounded 

up, otherwise it is rounded down. This ensures an unbiased rounding scheme, i.e. the 

expectation of the rounding perturbation is zero. However, the realization of this stochastic 

process on a finite number of cells in a table will not necessarily ensure that the sum of the 

perturbations will exactly equal zero. To place some control in the random rounding 

procedure, we use a semi-controlled random rounding algorithm for selecting the entries to 

round up or down as follows: First the expected number of entries of a given        that are 

to be rounded up is predetermined (for the entire table or for each row/column of the table). 

The expected number is rounded to the nearest integer. Based on this expected number, a 

random sample of entries is selected (without replacement) and rounded up. The other entries 

are rounded down.  This process ensures that the rounded internal cells aggregate to the 

controlled rounded total. 

 

Due to the large number of perturbations in the table, margins are typically rounded 

separately from internal cells and therefore tables are not additive. When using semi-



controlled random rounding this alleviates some of the problems of non-additivity since one 

of the margins and the overall total will be controlled, i.e. the rounded internal cells aggregate 

to the rounded total. Another problem with random rounding is the consistency of the 

rounding across same cells that are aggregated in different tables.  The consistency can be 

solved by the use of microdata keys. For each record in the microdata, a random number (i.e., 

a key) is defined which when combined with other records to form a cell of a table defines the 

seed for the rounding. Records that are aggregated into same cells will always have the same 

seed and therefore a consistent rounding (Fraser and Wooton, J, 2005, Shlomo and Young, 

2008).   

 

For this study, we carry out full random rounding to base 3 semi-controlled to the two 

NUTS2 totals in the hypercube.  As will be seen, we also apply semi-controlled random 

rounding to base 3 on a final output table generated from the original hypercube. 

3.3 Stochastic Perturbation  

A more general method than rounding is stochastic perturbation which involves perturbing the 

internal cells of the hypercube using a mechanism based on a probability transition matrix 

(similar to the method that is used in PRAM; see Gouweleeuw, Kooiman, Willenborg, and De 

Wolf, 1998).  

 

Let   be a             transition matrix containing conditional probabilities:     

                                                       for cell values from 0 to   (usually a cap 

is put on the cell values and any cell value above the cap would have the same perturbation 

probabilities).  Let   be the vector of frequencies of the cell values where the last component 

would contain the number of cells above cap   and   the vector of relative frequencies: 

     ,where   is the number of cells in the table. In each cell of the table, the cell value i 



is changed or not changed according to the prescribed transition probabilities in the matrix   

and the result of a draw of a random multinomial variate   with parameters        

        . If the  -th value is selected, value   is moved to value  . When    , no change 

occurs. 

 

Placing the condition of invariance on the transition matrix   (i.e.     ) means that the 

marginal distribution of the cell values are approximately preserved under the perturbation. 

As described in the random rounding procedure, in order to obtain the exact overall total a 

without replacement strategy for selecting the cell values to change can be carried out. For 

each particular cell value, we calculate the expected number of cells that need to be changed 

to a different value according to the probabilities in the transition matrix. The expected 

number of cells is rounded to the nearest integer. We then randomly select (without 

replacement) the cells and carry out the change. 

 

To preserve exact additivity in the table, an Iterative Proportional Fitting algorithm can be 

used to fit the margins of the table after the perturbation according to the original margins. 

This results in cell values that are not integers.  Exact additivity with integer counts can be 

achieved by controlled rounding to base 1 using for example Tau-Argus (Salazar-Gonzalez, 

Bycroft, and Staggemeier, 2005). Cell values can also be rounded to their nearest integers 

resulting in ‘close’ additivity because of the invariance property of the transition matrix. 

Finally, the use of microdata keys can ensure consistent perturbation of cells across 

hypercubes. 

 

For this study, we implement the stochastic perturbation based on an invariant probability 

matrix with controls in the overall totals of the two NUTS2 regions. We carry out the 



perturbation on cells of values in the range 0-10; all cells above a value of 11 were not 

perturbed. The invariant perturbation matrix used in this study is presented in Table 2.   

Table 2: Invariant Perturbation Matrix used to Perturb Hypercube  

 

 
 

4. Table Generating Servers   

The design of remote table generating servers typically involves many ad-hoc preliminary 

SDC rules that can easily be programmed within the system to determine a priori tables that 

should not be released.  These SDC rules may include:     

• Limiting the number of dimensions in the tables, 

• Ensuring consistent and nested categories of variables to avoid disclosure by differencing, 

• Ensuring minimum population thresholds, 

• Ensuring that the percentage of small cells is above a minimum threshold, 

• Ensuring average cell size above a minimum threshold. 

Despite these preliminary rules, the output tables generated in the system may still be 

disclosive and require the application of SDC methods. As mentioned, the SDC methods can 

be applied on the underlying data or applied directly to the final output table produced from 

the original data.  We compare these approaches in Section 6.  

0 1 2 3 4 5 6 7 8 9 10

0 0.998 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.080 0.760 0.080 0.047 0.024 0.004 0.002 0.001 0.001 0.000 0.000

2 0.080 0.153 0.686 0.047 0.024 0.005 0.002 0.001 0.001 0.000 0.000

3 0.000 0.148 0.078 0.703 0.027 0.031 0.007 0.002 0.002 0.001 0.001

4 0.000 0.103 0.054 0.037 0.725 0.022 0.024 0.020 0.006 0.005 0.005

5 0.000 0.023 0.014 0.055 0.029 0.783 0.031 0.025 0.023 0.009 0.008

6 0.000 0.013 0.007 0.012 0.032 0.032 0.814 0.029 0.026 0.025 0.010

7 0.000 0.005 0.003 0.005 0.035 0.034 0.037 0.797 0.029 0.027 0.027

8 0.000 0.005 0.003 0.005 0.013 0.039 0.042 0.036 0.798 0.030 0.030

9 0.000 0.005 0.003 0.005 0.013 0.017 0.046 0.039 0.034 0.807 0.032

10 0.000 0.005 0.003 0.005 0.013 0.017 0.021 0.043 0.037 0.034 0.823

Perturbed Cell ValueCell 

Value



 

For the flexible table generating server, we assume the scenario that the number of 

dimensions for generating a table is limited to three with one additional variable defining the 

population. For our output table, we define the population as those in the first  NUTS2 region 

and define the table as: banded age group*education*occupation. This table contains 2,457 

cells with 854,539 individuals, giving an average cell size of 347.8 individuals. The cell 

counts of the final output table are shown in Table 3.  

 

Table 3: Distribution of Cell Counts in the Generated Table: Banded Age 

Group*Education*Occupation for NUTS2=1 

Cell Value Number of Cells Percentage of Cells 

0 1534 62.43% 

1 44 1.79% 

2 35 1.42% 

3  27 1.10% 

4 20 0.81% 

5 and over 797 32.44% 

Total 2457 100.00% 

5. Information Theory Based Disclosure Risk and Data Utility Measures 

For each output table generated, the server must provide disclosure risk and data utility 

measures. We propose to use Information Theory (IT) to define these measures since the 

theory is particularly sensitive to the case of attribute disclosure which is caused by a 

dominant number of empirical (real) zeros in a row/column or table.  

 

5.1 Theoretical Development for the Measures 

Information theory is covered comprehensively in Cover and Thomas (2006). One of the most 

important formulas is entropy. Entropy is a measure of uncertainty in a random variable. Let 

  be a discrete random variable having a distribution               . The entropy is 

defined as:  



                     

 

   

  

If      for a category  , the respective term in the sum will be considered 0, since 

             . 

 

One can see easily that         since               Entropy is equal to 0 if the 

probability mass is concentrated on one point.   Under the uniform distribution    = 
 

 
 
 

 
   

 

 
 , we obtain the  maximum entropy:           . 

 

The entropy of the frequency vector in a table of size  ,                where    
 
    

  is: 

                                 
 

 
    

  

 
    

  

 

 
    

                
 
   

 
                           (1) 

 

To compare two probability distributions (               and               ), we  

use the  -divergences. The concept of  -divergence is specified in Csiszár (1967) and Csiszár 

and Shields (2004). To define an  -divergence we need a convex function      . We 

assume that       . The divergence between the two distributions determined by   is 

defined as:  

              
  
  
 

 

   

 

                                                                               

We also assume that:     
 

 
   ,                ,     

 

 
            

 

 
 .  

 



Using only these properties of function  , we are able to derive  an inequality that has several 

applications. Let            and            positive real numbers with sums      
 
    

and      
 
    respectively. Then the following inequality holds: 

      
  
  
 

 

   

     
 

 
   

 

The proof of the above inequality is based on the convexity of  . According to Jensen’s 

inequality  
  

 

 
      

  

  
     

  

 

 
    

  

  
    

 

 
   If   is strictly convex at 

 

 
, then equality 

holds if and only if    
 

 
    for every  . 

 

It follows immediately that          , since choosing       and       provides the 

inequality of 

           

 

   

   
  
  
            

                                      

Relative entropy or Kullback-Leibler divergence has a similar formulation to entropy but 

provides a comparison of two distributions. Relative entropy is an  -divergence with      

        which is a convex function. So, for  =             and                the 

relative entropy is: 

 

                                        
 
       

  

  
                                                        (2) 

 

Here       
 

  
   , if     , and        

  

 
   , if     . 

 



Relative entropy is not symmetric and triangle inequality also does not hold. Therefore, 

       does not meet the criteria of distances. The non-negativity of relative entropy 

follows from the non-negativity of  -divergences,           with equality if and only if 

      for all  . 

 

With this inequality,           as shown above since:  

              

 

   

    
  
   

                    

 

   

 

   

            

with equality holding if and only if the distribution is uniform. 

 

Note that        is also  -divergence with           . 

 

To measure the distance between two distributions, the    -norm can also be used. For an 

arbitrary vector                the   -norm         of   is defined as:  

           
 

 

   

 

   

  

The   -norm is the Euclidean-norm. As   converges to infinity,      tends to         . 

Therefore               is referred to as the   -norm of  .  

 

The distance of two distributions can be expressed as the   -norm of the difference: 

      . If    , this distance is equivalent to the  -divergence given by           . 

   -norm induces a metric on    as proven in Serre, 2010, since 

1.         , (non-negativity) 

2.              ,  

3.               (symmetry) 



        and also the triangle inequality, 

4.                     , is fulfilled. 

Let     and           . Selecting      
  and       results in the following 

inequality according to the proven inequality of the  -divergences: 

           
    

 

   

        
 

 

   

  

or 

      
 

   
        

   

If    , the inequality simplifies into 

             
   

 

 

For                 and                we denote                    and 

                  . These are not (necessarily) probability distributions, however, as 

vectors, their   -norms are 1. 

 

We define the Hellinger distance as the following   -norm and preserves the properties of a 

distance:   

        
 

  
        

 
 

 

Obviously,          . On the other hand,          , since 



        
 

  
            

 
 
    

 

  
                  

 
    

 

  
             

 
              

 
     . 

Suppose that          . Then    
 
      

  

  
     

 
        

  

  
       

 
   

                 
 
              Therefore Hellinger distance is also an  -

divergence. 

 

We can also apply the Hellinger Distance to two vectors of frequencies                

and                where       
    and       

   .  

                        
 

  
        

 
 

 

  
            

 
 
                                       (3) 

 

The Hellinger Distance shows the magnitude of the cells since the difference between the 

square roots of two ‘large’ numbers is higher than the difference between two ‘small’ 

numbers, even if these pairs have the same absolute difference. Naturally, while the lower 

bound remains zero, the upper bound of this distance of counts changes:  

 

        
 

  
            

 
 

   

 
 

  
                   

 

   

  

                                                 
 

  
               

 
     

   

 
. 

 

We can also show the further inequality:                    , and in terms of 

frequencies:             
 

 
                    



5.2 An Information Theory Disclosure Risk Measure  

 

A small level of entropy can indicate few non-zero cells in a row/column or table. The fewer 

the number of non-zero cells, the more likely that attribute disclosure occurs. We use the 

frequency based entropy as defined in (1).  To produce a disclosure risk measure between 0 

and 1, we define the risk measure as:   
  

 

 
 

    
  

 

The entropy however does not take into account the magnitude of the cells counts or the 

number of zeros in the table (or row/column of the table) which both contribute to identity 

disclosure.  Let   be the set of zeros in the table and     the number of zeros in the set. We 

define a disclosure risk measure as a weighted average of different components, each 

component being a measure between 0 and 1 as follows: 

 

               
   

 
        

                
 
   

      
             

 

  
    

 

   
  (4) 

  

The first measure in (4) is the proportion of zeros which is relevant for attribute disclosure, 

the more zeros in a table, the more risk of learning new attributes after an identification. The 

second measure in (4) is the risk based on the entropy as shown in (1) which is the core of the 

risk measure. The third measure in (4) allows us to differentiate between tables with different 

magnitudes. As the population size N gets larger, the measure converges to zero. The weights 

   and    should be chosen depending on the data protector’s choice of how important each 

of the terms are in contributing to the disclosure risk.  

 



As can be seen, the final disclosure risk measure in (4) can be calculated ‘on the fly’ by the 

flexible table generating server without the need to see the table beforehand. In order to 

emphasize the risk of small counts (ones and twos) which still remain in the table for some of 

the SDC methods, we split the entropy measure as shown in (1)  (and  the second term in (4)) 

into two parts, small counts up to 3 and larger counts 4 and more, and provide different 

weights for each part. For this study, we use weights:                    ,         

   , and        which provides the largest weight to the entropy based on small counts.  

 

5.3 Adapting Disclosure Risk After Perturbation  

 

The disclosure risk measure in (4) does not take into account perturbation methods. Random 

rounding, for example, eliminates ones and twos by introducing more zeros and threes in the 

table, and seemingly increases the risk of attribute disclosure.  Although the extra zeros in the 

table are random and not real zeros, the disclosure risk as measured by the entropy in (1) (and 

the second term in (4)) will not reflect the noise introduced into the table and may even 

produce a higher disclosure risk estimate. So, in order to take into account the perturbation, 

we propose to modify the first two terms of the risk measure in (4) as follows:  

 

1. We generalize the first term of the proportion of zeros in (4) in order to compare the 

number of zeros in the original and perturbed table. From (4), A is the set of zeros in the 

original table and |A| is the number of zeros in the set. Similarly, let B be the set of zeros in 

the perturbed table and |B| the number of zeros in the set.   We denote  BA  as the union 

of the sets of zeros in the original and perturbed table and      as the intersection of the 

sets of zeros in the original and perturbed table. The revised measure, which takes into 

account that non-zero cells may be transformed into zero counts and vice versa, is  defined  



as:  
   

 
 

     

     
. 

 

To control the rate of convergence to zero we may replace the power term 
     

     
 with a 

square root: 
||

||

BA

BA




 . 

2. We assume that the possible values in the table are:           and the frequency of 

frequencies of these values is denoted by:                 and that the table is 

perturbed according to a perturbation mechanism  (for example, using the perturbation 

matrix as shown in Table 2). Let the frequency of frequencies of the perturbed values be 

denoted by:    
    

    
      

  . The contribution to the total for value             

in the perturbed table is:          
 
   .  

We replace the observed perturbed values of value   by the term: 
         
 
   

 
 

 
 . As an 

example, assume the SDC method of random rounding. We replace the zero cells in the 

perturbed table by:         
 

 
      

 

 
      

   and replace the cells of size three 

in the perturbed table by:    
 

 
      

 

 
           

 

 
      

 

 
      

  . The 

procedure ensures the same overall total of the original and adjusted vector of counts. 

After replacing the values in the perturbed table, we calculate the entropy as shown in (1) 

(and the second term in (4)).  

 

 

 

 

 



5.4 Data Utility Measure 

 

For the data utility measure we use the distance metric defined by the Hellinger Distance in 

(3) where                       is the vector of square roots of the perturbed counts:  

                           

 
           

 
 
                                                                          (5) 

Since all the SDC methods applied to the table produce approximately the same total N due to 

the controlled methods of perturbation, we can compare the Hellinger Distance across the 

methods as it is bounded by 0 and approximately   . 

6. Results  

We report in Table 4 the disclosure risk measure in (4) and the Hellinger Distance in (5) for 

the table defined in Section 4 based on SDC methods on the input hypercube (record 

swapping, semi-controlled random rounding and stochastic perturbation) described in Section 

3. In addition, we report the measures when implementing the SDC method of semi-

controlled random rounding applied directly on the output table generated from the original 

hypercube.  

Regarding the number of small cells of size 1 and 2, there were a total of 6,140 small cells in 

the hypercube (2.5%). The stochastic perturbation changed only 6.9% of the small cells, the 

random rounding to base 3 changed 100% of the small cells and the random record swapping 

changed 16.2% of the small cells.  

From Table 4, it is clear that the method of record swapping when applied to the hypercube 

did little to reduce the disclosure risk in the final output table. This was due to the fact that 

most of the small cells remained unperturbed in the final table.  On the other hand, record 

swapping provides the smallest distance metric (highest data utility) between the original and 



perturbed table compared to the other pre-tabular methods. From among the input 

perturbation methods on the hypercube, the stochastic perturbation provided the most 

protection against disclosure but at the cost of a low data utility with the highest distance 

metric between the original and perturbed table. Removing the small cells entirely and 

rounding the other cells provided lower disclosure risk as seen in the measures for the semi-

controlled random rounding but had less of an impact on the data utility. Comparing the pre-

tabular and post-tabular semi-controlled random rounding procedure, we see slightly lower 

disclosure risk based on the post-tabular rounding but much improvement in   data utility 

since the SDC method is not compounded by aggregating rounded cells. The semi-controlled 

random rounding on the final output table would be the preferred method based on the results 

of the study.   

Table 4: Disclosure Risk and Data Utility for the Generated Table 

 Disclosure Risk Hellinger  

Distance  

Original 0.352  - 

Perturbed Input 

Record Swapping 0.351 6.469 

Semi-controlled Random Rounding 0.237 7.970 

Stochastic Perturbation 0.230 14.120 

Perturbed Output 

Semi-Controlled Random Rounding 0.233 5.902 

 

7. Concluding Remarks 

In this paper, we describe a simulation study comparing the application of SDC methods at 

different stages of generating tables in a flexible table generating server. For the pre-tabular 

methods, record swapping had little impact on reducing our measure of disclosure risk and 

therefore we would not recommend it in a flexible table generating server of census data. 



Semi-controlled random rounding offers more protection since every cell in the table is 

perturbed and by preserving consistency of cells across tables, it is more difficult to ‘attack’ 

the rounding to obtain the original table. The stochastic perturbation can also be refined to   

improve data utility by adapting the transition matrix in Table 2 but this will come at the cost 

of higher disclosure risk. However, for a flexible table generating server, we have seen that 

the post-tabular SDC method achieves nearly as good a disclosure risk impact as the pre-

tabular stochastic perturbation method whilst achieving the best level of data utility.   

 

We also propose new measures for disclosure risk and data utility based on Information 

Theory which are particularly suited for assessing disclosure risk arising from attribute 

disclosure in tables and can easily be embedded in a flexible table generating server. 

 

Post-tabular stochastic perturbation combined with preliminary SDC rules may also provide 

more protection. This method can also be adapted to guarantee differential privacy according 

to the Computer Science definitions. Further research needs to be directed to improving 

stochastic post-tabular SDC methods whilst preserving additivity and consistency of user-

defined tables.     
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