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Abstract 

Age-specific rates of particular disability types are important for planning purposes and are a 

valuable input to estimates and projections of populations with different disabilities. 

However, survey estimates of schedules of disability rates display evidence of sampling 

variability and sub-national disability schedules are often unavailable for reasons of 

disclosure protection. This paper develops and evaluates a method to smooth sampling 

variability in national schedules of disability using a technique that has applicability to sub-

national estimation of age-specific disability rates. Relational models are used to adjust the 

limiting long term illness schedule for England (Census 2001) to represent different disability 

schedules (Health Survey for England 2000/01) smoothing sampling fluctuations. For hearing 

disability a simple Brass relational model involving two parameters provides a good fit. For 

other disability types a modified version of the Ewbank relational model with 3 parameters is 

required. This paper illustrates that relational models can accurately capture the relationship 

between age-specific rates of limiting long term illness and various disability types.   
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Development of a relational model of disability 

1. Introduction 

This paper extends relational models beyond their original application, the estimation of 

mortality to the estimation of schedules of various disability types. The England curve of age-

specific limiting long term illness (LLTI) rates from the census (2001) is used as the 

‘standard’ schedule which is adjusted to represent schedules of various disability types, 

smoothing the variability in national age-specific rates of disability from the Health Survey 

for England (2000/01). Whilst disability schedules share a similar age pattern to that of LLTI 

(see figure 1) with low rates across the younger ages that rise with age there are differences in 

levels of curves as well as the increase in rates with age. The question we address in this 

paper is whether relational models are sufficiently flexible to accurately represent disability 

schedules (England) despite these differences.  

 

Estimates of the population with disabilities that distinguish disability type and severity are 

important for planning purposes to inform the provision of specialist services, equipment, and 

support (Field 1987; Siegel 2002). Disability schedules are useful partly because the nature of 

disability service provision varies and is structured by age (Marshall 2009), but also because 

many disability types follow the same general age pattern: low rates across the younger ages 

that rise with age reaching the highest levels at the oldest ages (see Figure 1). Knowledge of 

the population size and age structure and how these are changing provides an indication of 

the size of the disabled population and how it too might change. 

 

In the UK, national survey estimates of disability distinguishing disability type and severity 

are subject to sampling variability once disaggregated by age resulting in a ragged curve 
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particularly at the oldest ages (see figure 1). Alternative data sources on disability that 

enumerate the total population are not subject to the issue of sampling error to the same 

extent but they do suffer from other weaknesses. For example, the 1991 and 2001 censuses 

record the numbers of people who are limited in work or everyday activities due to an illness, 

disability, or health problem but do not provide any information on the nature or severity of 

the limiting condition. Administrative sources such as disability registers and statistics of 

benefit claimants are compromised because they do not count those disabled people who do 

not register or use disability benefits (Macfarlane and Head 1999; Bajekal et al. 2003).  

 

LLTI, locomotor and personal care disability 

schedules (England: Males – 2000/2001) 

LLTI, locomotor and personal care disability 

schedules (England: Females – 2000/2001) 
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Fig 1 Limiting Long Term Illness (LLTI) and selected disability schedules for England 
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Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 

Relational models comprise a (reliable) standard schedule of rates and a mathematical rule 

that maps the standard schedule to another schedule in a population where information may 

be incomplete or unreliable (Preston et al. 2001). Relational models were originally 

developed for the estimation of mortality schedules (Brass 1971) and a key advantage of the 

approach is that the complexity of the mortality age pattern is captured in the standard 

schedule and a small number of parameters then quantify the deviation from this standard. 

Relational models require fewer parameters than mathematical mortality functions and can 

flexibly reproduce sets of model life tables using two suitably chosen parameters and a 

standard schedule (Keyfitz 1982; Preston et al. 2001). 

 

The original Brass (1971) relational model is based on a logit transformation of l(x), the 

probability of surviving to age x in the population of interest.  
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The logit transformation of l(x) is valuable because the relationship between two logit 

mortality schedules turns out to be remarkably linear (Newall 1988). On the basis of this 

linear relationship, Brass proposed a simple relational formula involving two parameters, α 

and β, to predict Y(x) from the logit of l
s
(x), Y

s
(x), in the standard population: 

)(*)( xYxY s           2 

When α=0 and β=1 then )(xY and )(xY s
 are identical. Altering α affects the level of 

mortality in the population of interest, whilst altering β influences the relationship between 
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mortality at adulthood and childhood. For more on the impact of changes in the values of α 

and β see section 3.2 and Zaba (1979: p80).  

Two features determine the success of the relational approach, these being the 

appropriateness of the standard schedule and the relational rule (Preston et al. 2001). The 

relational approach can be used successfully with any standard, but it is most effective if the 

standard is close to that of the population being modelled (Keyfitz 1982). There have been 

several extensions to the Brass relational function allowing more accurate representations of 

mortality particularly at the oldest and youngest ages. For example, Zaba (1979) and Ewbank 

et al. (1983) propose relational models with two additional parameters that significantly 

improve the fit compared with the Brass relational model (Newall 1988). Murray et al. (2003) 

note the difficulty associated with the empirical estimation of parameters in the Ewbank et al. 

(1983) and Zaba (1979) relational models and develop an alternative model which uses two 

additional age-specific correction factors based on mortality levels among children and 

adults, relative to the standard.  

 

Relational models have been developed for particular countries (e.g. for Peru by Kamara and 

Lamsana (2001)) and have also been successfully extended to other demographic 

characteristics. For example, Brass (1981) developed a relational model for fertility schedules 

based on the Gompertz function, noting the utility of this approach in terms of its simplicity 

and the quality of fit of model rates. Zaba (1985; 1987) developed a relational model for 

schedules of immigration and emigration that involves three parameters. Booth (2006) 

documents the utilisation and development of these relational models of migration and of 

fertility in her excellent review of techniques of demographic forecasting (1980-2005).  

Relational models are particularly appropriate for estimation of disability schedules because 

of the strong age pattern of prevalence rates which, like mortality schedules, are low at the 
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youngest ages and rise with age. This pattern holds over time, place and for many disability 

types (see Figure 1). In this paper, the LLTI schedule for England (2001 census) is used as a 

reliable ‘standard’ schedule which is then adjusted to represent the schedules of particular 

disability types (Health Survey for England 2000/2001) smoothing fluctuations that are 

attributable to sampling error. Figure 2 compares the logit rates of LLTI (census) with logit 

schedules of locomotor (mobility) disability (Health Survey for England) at each single year 

of age illustrating the approximately linear relationship that is fundamental to the relational 

approach.  
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Fig 2 Scatterplot of the relationship between the logit LLTI schedule and the logit mobility 

disability schedule (Males – England) 

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 

 

In addition to relational models there are alternative methods by which curves could be fitted 

to disability schedules, such as parametric graduation or graduation using spline functions. 

However, the relational model of disability that is developed here is motivated by its potential 

to fill an important information gap; the lack of disability estimates locally either because 

these are extremely unreliable due to small sample sizes once disaggregated by age, or 
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because the release of local information is suppressed for reasons of disclosure protection 

(Purdam et al. 2008). The use of a curve of age specific rates of LLTI from the census as the 

standard schedule is proposed because age-specific LLTI rates are reliably available from the 

census for sub-national areas. Thus census LLTI schedules could act as a proxy for the level 

of disability in a neighbourhood with adjustments informed by relational models fitted for 

England as a whole. We do not evaluate sub-national relational models of disability here as 

this is undertaken in a separate paper (Marshall 2012b). We return to this local application of 

the techniques developed here in the discussion. 

 

It is important to note some differences between relational models of mortality and disability 

that may complicate the proposed modelling of disability schedules. Whilst relational models 

of mortality predict the logit of survivorship rates, the relational model of disability proposed 

here predicts the logit of disability prevalence rates. Survivorship rates start at 1 at birth and 

decrease monotonically to approach zero at the oldest age. In contrast disability rates start 

close to zero at the youngest ages and rise to between 0.7 and 0.2 depending on disability 

type. Increases in disability rates need not be monotonic, because, for example, people can 

recover from disability. Figure 1 shows that the rate of increase in LLTI for males stops 

around retirement age (60-65) before increasing again throughout the older ages. Features 

such as this ‘retirement kink’ in the LLTI schedule are likely to be preserved in the relational 

model disability schedules and we return to the appropriateness of this particular feature in 

the discussion. 

 

After this introduction the paper is divided into six sections. First, the data sources that are 

used in the paper are discussed. Second, the four relational models that are fitted are defined. 

Third, the approach to evaluating the success of each model is outlined. Fourth, the findings 
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of the model evaluation are stated. Fifth, the findings are discussed and finally, conclusions 

are drawn.  

 

2. Data 

The analysis in this paper combines data from two sources. The 2001 census provides reliable 

LLTI schedules and the Health Survey for England (2000/2001) provides detailed 

information on disability, distinguishing the nature of the disability. 

2.1 The census of population (UK) 

The census has been carried out since 1801, during which time sporadic questions on health 

and disability have been asked (Charlton 2000). The main advantage of the census as a source 

of data on disability is its almost complete enumeration of the population and the fine 

geographical detail at which data are reliably available. In 2001 the census included a 

question on limiting long term illness that records any illnesses, health problems, or 

disabilities that limit an individual in their daily activities. A very similar question had been 

asked in 1991. The question on LLTI features a prompt for elderly people to include 

problems that are due to old age. This is useful because it is known that the elderly tend to 

discount some health problems as being a result of ageing (Bajekal et al. 2003). There is 

some undercount in the census which is larger in some areas of the country and for certain 

population groups (Cook 2004). However, these problems are small compared to the 

uncertainty associated with sample data and we do not address this undercount here.  

Box 1 Limiting long term illness question – census 2001. 

Do you have any long-term illness, health problem or disability which limits your daily 

activities or the work that you can do? Include problems which are due to old age. (Yes/No) 

Source: 2001 Census household questionnaire. Available at 

http://www.statistics.gov.uk/census2001/pdfs/H1.pdf 

http://www.statistics.gov.uk/census2001/pdfs/H1.pdf
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In terms of the general utility of self-reported limiting long term illness, a large body of work 

supports the validity of self-assessed health (Mitchell 2005) with LLTI found to be most 

strongly associated with general health perceptions, more serious health conditions (Manor et 

al. 2001) and physical limitations rather than with psychological health (Cohen et al. 1995). 

There are strong relationships between LLTI and other health outcomes including all cause 

and cause-specific mortality (Charlton et al. 1994; Bentham et al. 1995; Idler & Benyamini 

1997) as well as sickness benefits claims from different health conditions (Bambra and 

Norman 2006; Norman and Bambra 2007). The 2001 census data on LLTI is downloaded 

from table ST16 which records the population with (and without) LLTI with age and sex 

detail for the household population.  

2.2 The Health Survey for England 

The Health Survey for England (HSE) was set up in 1991 to monitor the health of the private 

household population in England and the progress towards targets laid out in the Health of 

the Nation strategy (DoH 2007). The survey follows a multistage, stratified probability 

sampling design. The sample size was increased from around 4,000 to 16,000 in 1994 

enabling analysis for Health Authority Regions and between socio-economic groups. From 

1995 a sample of 4,000 children between the ages of 2 and 15 were included in the sample 

(Bajekal 2000). Each year of the HSE has a particular focus, with a module measuring 

disability included in 1995, 2000, 2001, and 2005. In this paper the data on disability in 2000 

and 2001 are combined to increase sample sizes and to overlap the data collection date of the 

2001 census, a feature that is particularly useful for the models that combine HSE and census 

data. The 2000 survey focused on disability amongst the elderly with a boosted sample of 

elderly people including the elderly living in residential and care homes along with a reduced 

sample of the general population (Bajekal and Prescott 2003).  
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Presence of a disability is identified along five domains: locomotion (mobility), personal 

care, sight, hearing, and communication. A person is classed as having no disability or a 

disability at a lower or higher level for each of the five domains based on their answers to 

questions on ability to perform everyday tasks (see appendix). The highest score for any of 

the five types of disabilities is taken as the overall disability score. A score of 1 indicates a 

lower severity disability, a score of 2 indicates a higher severity disability and a score of 0 

indicates no disability. In this paper model rates are produced for overall disability and each 

disability type with the exception of communication disability which is omitted because it 

does not display the strong age pattern necessary for the relational models developed here. 

Severity of disability is not distinguished and so the rates of disability include those with 

either a higher or lower severity disability. The HSE allows respondents to take into account 

the use of aids for hearing and sight disabilities, however, for the other domains the use of 

aids to perform tasks are not allowed. Data are collected using face-to-face computer assisted 

personal interviewing and the disability module applies to all people aged 10 or over. Proxy 

answers are not permitted for adults but parents answer for children under the age of 13 

(Bajekal and Prescott 2003). 

2.3 Data preparation 

The analysis of the merged 2000-01 HSE datasets requires the use of two types of weights to 

ensure that estimates are representative of the target population. First, child weights are 

needed to compensate for the sample design at these ages which involves limiting the number 

of children interviewed in each household to two. Second, the HSE in 2000 includes weights 

to account for the oversampling of the elderly and institutional population. In order to 

compensate for the lack of older people living in institutions in 2001, the weights associated 

with people living in institutions in 2000 are doubled.  
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All models use rates by single year of age up to the age of 84 with an age of 88 to represent 

all those aged over 84. The use of 88 as the upper age limit is based upon the average age of 

the population aged over 84 as calculated using the 2001 census Sample of Anonymised 

Records (a 3% sample of individual records from the 2001 census). Census tabulations of 

LLTI are only released with quinary age detail (from the age of 20 upwards) and in order to 

generate single year estimates, these five year rates are smoothed using an Excel based tool 

developed by users of the Popgroup population projection software 

(http://www.ccsr.ac.uk/popgroup/index.html) specifically for this purpose. The Excel 

smoothing tool and more information on the smoothing approach are available at: 

http://www.ccsr.ac.uk/popgroup/about/manuals.html 

 

3. Models 

3.1 Notation  

The subscript notation that is used in the model specifications throughout this paper is 

detailed in Table 1. 

Table 1 Subscript notation 

Notation Range Notes 

i  = individual 1 … N  

x = age x = 10, 11, 12, … , 84, 88 88 is the age used to 

represent the 85+ age 

group 

d  = disability type d = 1 … 5 Overall disability, 

locomotor, personal care, 

hearing and sight 

l  = limiting long term illness 0=no llti 1=llti  

 

 

http://www.ccsr.ac.uk/popgroup/index.html
http://www.ccsr.ac.uk/popgroup/about/manuals.html
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3.2 Brass relational model 

The Brass relational model used in this analysis is defined below: 

Let: 

xdp = prevalence of disability d at age x in England (HSE00/01) 

xlp = prevalence of LLTI (l) at age x in England (census01) 

Then: 
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The impact of varying values of α and β on the LLTI schedule are illustrated in Figure 3. A 

negative value of α shifts the LLTI schedule downwards whilst a positive value shifts it 

upwards. A value of β above 1 decreases rates of LLTI at the youngest ages and increases 

them at the oldest ages with the converse being true for values of β below 1. 

Impact of altering values of α Impact of altering values of β 
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Fig 3 Brass relational model - Impact of altering values of α and β on the LLTI standard 

schedule (Males – England) 

Source: Authors’ calculations using data from the census (2001) 
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3.3 Ewbank relational model 

Ewbank, with colleagues, Gomez de Leon and Stoto, develop a more complex relational rule 

with four parameters that allows more twisting of the reference schedule at the oldest and 

youngest ages (Ewbank et al. 1983). This four parameter system is an extension of Brass’ two 

parameter relational model. The Ewbank model that is fitted to derive local disability 

schedules is defined below: 

First, define function T (which comprises the two additional parameters  and  ) as: 
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Let: 

 =1 if xlp 0.5 and 0 otherwise 

 =1 if xlp <0.5 and 0 otherwise 

Then: 
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The part of function T (see equations 4 and 5) that is fitted is determined by the rates of LLTI 

(pxl) and the age at which these rates pass 0.5. For both males and females, rates of LLTI first 

exceed 0.5 at age 76 so equation 4 (involving κ) is fitted between the ages of 10 to 75, whilst 

equation 5 (involving λ) is fitted to the ages of 76 and above. This is not altogether different 

to the cut-offs that might be used for a Ewbank model of mortality. For example, in the UK 
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lifetable (2008-10) published by the Office for National Statistics, survivorship probabilities 

pass 0.5 at the age of 80. 

 

The Ewbank relational model has several useful features for the purposes of this paper. First, 

it allows more flexibility in the adjustment of LLTI schedules than the Brass model which is 

likely to be necessary for disability types that deviate most from the LLTI age pattern. 

Second, the transformation T approaches the logit transformation (and thus a Brass relational 

model) as λ and κ tend to zero. This can be shown by expanding the transformation T into a 

series. This property of ‘nested’ models is useful for the model comparison and is also 

exploited to develop a ‘Reduced Ewbank’ model. Third, the transformation introduces the 

biggest changes at the most extreme ages where the logit transformation is most likely to be 

unsatisfactory. So, λ only affects estimates at the oldest ages and κ only affects estimates at 

the youngest ages.  

3.4 Reduced Ewbank model 

A criticism of the Ewbank model in the literature is the difficulty in estimating the additional 

parameters which complicate the application of this model (Murray et al. 20003). Congdon 

(1993) discusses the problem of overparameterisation when fitting relational models, where a 

range of parameter estimates are associated with a similar model fit, and recommends a 

model with fewer parameters when overparameterisation occurs. A reduced version of the 

Ewbank model (from here on known as the Reduced Ewbank model) is developed in this 

paper to provide a more flexible alternative to the Brass model whilst avoiding the issues 

identified by Murray et al. (2003) and Congdon (1993). There are some parallels between the 

reduced Ewbank model in this paper and that adopted by Kamara and Lansana (2001) for the 

estimation of mortality schedules in Peru where the four parameter relational model 
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developed by Zaba (1979) is altered to derive a simpler relational model also involving three 

parameters. 

 

There is a strong argument that α and β should remain in the Reduced Ewbank model as both 

are included in the Brass model and the full Ewbank model. This means that either κ or λ 

might be dropped from the model. Clearly setting one of these parameters to zero would 

remove the effect of β for at least part of the model (see equations 4 to 6) as the function T 

would equal zero. However, we know that the function T approaches a logit transformation 

when κ and λ tend to zero and so it is proposed that where one of these variables is dropped 

the T function should be replaced by a logit transformation. The Reduced Ewbank model is 

shown in equations 7 and 8.  

Let: 

 =1 if xlp 0.5 and 0 otherwise 

 =1 if xlp <0.5 and 0 otherwise 
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Parameter lambda dropped from the model 
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3.5 Piecewise relational model (sight disability) 
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Examination of the sight disability schedules (see figure 1) shows that age pattern is flat and 

very low up to the age of 60 with a steady increase in prevalence occurring thereafter. 

Epidemiological research confirms the rarity of sight disabilities at the younger and working 

ages and reveals that the causes are often congenital in nature (Munier et al. 1998; Rahi and 

Dezateux 1998). Sight disabilities occur with increasing frequency at the oldest ages with 

causes linked to the ageing process. Macular degeneration, glaucoma and cataracts account 

for three quarters of sight problems for those aged over 80 (Munier et al. 1998).   

 

The shape of the sight schedule may be better modelled with a piecewise approach using an 

average prevalence rate up to the age of 60 and a relational model above the age of 60 where 

an age pattern emerges. This approach acknowledges the rarity of the mainly congenital sight 

disabilities under the age of 60 and the more typical disability age pattern at the older ages as 

sight problems that stem from the aging process emerge. 

The piecewise Brass relational model is defined below: 

Let: 

r =1 if 
rx >59 and 0 otherwise 

r =1 if 
rx 59 and 0 otherwise 
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In the model specification above the parameter δ is constrained as below: 
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The α and β parameters have the same interpretation as in previous relational models 

adjusting the level and shape of the LLTI schedule to estimate the sight schedule, however in 

this model they only have an effect over the age of 60. The piecewise model is less desirable 

than the other relational models that apply across the whole age range in that it might lead to 

discontinuities in the model schedules on either side of the break in the piecewise function. 

However, such an approach may be required for sight disability which deviates most from the 

shape of the LLTI curve.  

3.6 Model estimation 

The statistical computer package STATA is used to fit the relational models using least 

squares regression. The regress (linear regression) command is used to fit the Brass and 

piecewise relational models. The nl (non-linear regression) command is used to fit the 

Ewbank and Reduced Ewbank models with starting values of 1 given to all parameters. 

Experimentation with other starting values did not alter the final parameter estimates. 

 

An alternative method of model estimation is to use weighted least squares regression with 

weights based on an assumption that the rates of disability follow a binomial distribution 

(Congden 1993). Fitting relational models of disability in this way led to a poor fit compared 

to unweighted analysis; the weights gave too much attention to the low rates of disability at 

the youngest ages and too little attention to the higher rates at the middle and older ages. A 

similar issue is noted by Hoem et al. (1981) who also opt for ordinary least squares to fit 

relational models of fertility.   

 

 

4. Comparing models 
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The procedure to select the most appropriate relational model for each disability type 

(separately for males and females) involves two stages. The first determines whether the 

improvement in model fit, compared to the next simplest model, reaches statistical 

significance. Second, the stability of parameter estimates from the chosen model is assessed 

and if evidence of overparameterisation is discovered the model is discarded.  

4.1 Improvement in model fit 

It is almost always the case that a more complicated model will fit the data better (have a 

lower residual sum of squares) than a simpler one. So, for example, the Ewbank model will 

generally fit the data better than the Reduced Ewbank model which in turn will have a lower 

residual sum of squares than the Brass model. The extra sum of squares F test (detailed in 

Motulsky and Christopoulos (2004) and Norman et al. (2012)) is based upon the difference in 

residual sum of squares (from here on referred to as sum of squares) from two models and 

controls for the number of data points and the number of parameters in each model. It uses 

this information as shown in Table 2 to calculate a ratio that follows an F distribution under 

the null hypothesis that there is no evidence to accept the more complicated model (i.e. the 

residual sum of squares in each model are identical after accounting for improvements 

attributable to additional parameters). We can use the F-ratio to calculate an associated p-

value that gives the probability that the improvement in model fit associated with the more 

complicated model (after accounting for improvements attributable to additional parameters) 

is actually a result of the sampling process rather than any ‘real’ improvement. For the 

purposes of this research a threshold of p=0.05 is used to determine whether the more 

complex model gives a better fit than the simpler model.  

 

Table 2 Extra sum of squares F test - calculations 
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Model Sum of squares (SS) Degrees of freedom (df) 

Null hypothesis SSnull DFnull 

Alternative hypothesis SSalt DFalt 

Difference SSnull-SSalt DFnull-DFalt 

Relative difference (SSnull-SSalt)/SSalt (DFnull-DFalt)/ DFalt 

Ratio (FDF1-DF2,DF2) 

altaltnull

altaltnull

DF)/ DF-(DF

)/SSSS-(SS
 

 

Source: Motulsky and Christopoulos (2004) 

*Note the null sum of squares relates to the simpler model (e.g. Brass) and the alternative to a more complex 

model (e.g. reduced Ewbank). 

As the two versions of the Reduced Ewbank model have the same number of parameters, 

then the decision as to whether k or l is dropped is made on the basis of the model with the 

lowest residual sum of squares. 

4.2 Model stability 

In addition to the extra sum of squares F test it is also important to check parameter estimates 

for signs of overparameterisation, where a range of parameter values are associated with a 

similar model fit. The symptoms of overparameterisation are standard errors that ‘explode’ 

estimates of parameters outside ‘normal’ ranges and high estimated correlations between 

parameters (virtual collinearity). A useful test of overparameterisation is to compare 

estimates of α and β from a Reduced or full Ewbank model to those from a Brass model that 

is restricted to the ages not seriously affected by the additional parameters (λ/κ). If the model 

is not overparameterised then we would expect estimates of α and β to be similar in each 

model. 

 

 

5. Findings 



 20 

Before displaying results from the model comparison outlined in the previous section it is 

worth noting the generally good fit of the relational models to the observed disability 

schedules. R squared statistics for all relational models are above 0.9 for overall, locomotor 

and personal care (females) disability and are around or above 0.8 for personal care (males) 

sight (females) and hearing disability. The improvement in R-squared values in the Reduced 

Ewbank and Ewbank models compared to the Brass model is greatest for sight disability, in 

particular for males.  

Table 3 R
2
 statistics for relational models 

Males 

Disability 
R

2
  

Brass Reduced Ewbank Ewbank Piecewise 

Overall disability 0.94 0.94 0.94 n/a 

Locomotor 0.94 0.94 0.94 n/a 

Personal care 0.85 0.87 0.87 n/a 

Hearing  0.85 0.86 0.85 n/a 

Sight 0.55 0.69 0.69  

Females 

Disability R
2
  

  Brass Reduced Ewbank Ewbank Piecewise 

Overall disability 0.95 0.96 0.96 n/a 

Locomotor 0.91 0.92 0.92 n/a 

Personal care 0.90 0.93 0.93 n/a 

Hearing  0.81 0.82 0.82 n/a 

Sight 0.67 0.73 0.74  

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 

Table 4 displays the results of the extra sum of squares F tests under the Brass, Reduced 

Ewbank, and Ewbank models. For both males and females, the Reduced Ewbank model 

offers an improvement in fit over the Brass model that is statistically significant for all 

disability types with the exception of hearing disability. The same version of the Reduced 

Ewbank model is selected for males and females for each disability type; the additional 

parameter κ is required for locomotor, personal care and sight disability and the additional 

parameter λ is required for overall disability. The improvement in model fit under the 

Ewbank model does not achieve statistical significance for any of the disability types.  
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Table 4 Residual sums of squares and F ratio p-values (from extra sum of squares F test) 

MALES 

 Disability 

Brass Reduced Ewbank1 Ewbank 

Total SOS SOS SOS F ratio p value2 SOS F ratio 

p value2 

Disability 1.68 1.58 (l) 0.04 (l) 1.56 0.3 27.27 

Locomotor 3.28 2.35 (k) <0.0000 (k) 2.34 0.6 39.70 

Personal care 2.96 2.58 (k) 0.002 (k) 2.57 0.53 20.07 

Hearing 3.68 3.67 (l) 0.61 (l) 3.68 0.96 25.35 

Sight 7.41 5.25 (k) <0.0000 (k) 5.22 0.59 16.81 

FEMALES 

Disability 

Brass Reduced Ewbank1 Ewbank 

Total SOS SOS SOS F ratio p value2 SOS F ratio p 

value2 

Disability 1.39 1.28 (l) 0.01 (l) 1.22 0.06 28.55 

Locomotor 3.53 3.21 (k) 0.0009 (k) 3.19 0.34 38.56 

Personal care 2.25 1.76 (k) <0.0000 (k) 1.75 0.71 23.51 

Hearing 4.73 4.64 (l) 0.26 (l) 4.35 0.06 25.45 

Sight 6.30 5.05 (k) 0.0001 (k) 4.86 0.10 18.90 

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 

 

A further weakness of the Ewbank models of disability is that model estimates reveal clear 

evidence of overparameterisation. The 


  parameter estimate is often much higher than in the 

Brass models and many of the parameter estimates have very high standard errors. For 

example, for overall disability (males) 


  is equal to 37.7 with a standard error of 54.9). 

Examination of estimated correlations between parameters from the Ewbank model reveals 

virtual collinearity between the


  and 


  parameters and the 


  and 
^

 .  

                                            
1
 The parameter that is kept in the reduced Ewbank model (k or l) is determined by which of the models has the 

lowest residual sum of squares. 

2 The F test compares a model with the next simplest (in terms of number of parameters). The reduced Ewbank 

model is always compared to the Brass model.  The Ewbank model is compared to the Brass model or to the 

reduced Ewbank model if the reduced Ewbank model offers a better fit than the Brass model. The shaded cells 

correspond to the model that gives the best fit according to the extra sum of squares F test. 
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The parameter statistics from the Brass and Reduced Ewbank models (see table 5) 

recommended by the extra sum of squares F test suggest that overparameterisation is less of 

an issue for these models. All parameter estimates achieve statistical significance and appear 

to be within ‘normal’ ranges.  

 

Whilst our parameter estimates appear more stable in the Reduced Ewbank models, some 

evidence of overparameterisation remains, particularly where the κ parameter is retained. 

There are strong estimated correlations between the 


  and 


  parameters in Reduced 

Ewbank models (estimated correlation ranges between 0.94 to 0.99). The issue of 

overparameterisation is noted as a potential weakness of the relational models of disability 

developed here. However, the stability of the Reduced Ewbank models is much improved 

compared to the full Ewbank models. The tendency for the same form of Reduced Ewbank 

model to be selected for both males and females for all disability types is an encouraging sign 

of the stability of Reduced Ewbank models. This suggests that a similar weakness of the 

Brass model is addressed in a consistent way for both female and male disability schedules.  

 

 

 

Table 5 Parameter statistics from the relational models selected through the extra sum-of 

squares F test (see table 4) 

Males 

  Parameter Parameter estimate Std. Err. t P>t 95% Confidence interval 

Overall disability 
α -0.16 0.03 -4.85 <0.0000 -0.23 -0.10 

β 1.01 0.04 28.76 <0.0000 0.94 1.08 
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λ 1.09 0.10 11.10 <0.0000 0.90 1.29 

Locomotor 

α -0.47 0.03 -14.85 <0.0000 -0.53 -0.41 

β 1.71 0.30 5.68 <0.0000 1.11 2.32 

κ 0.55 0.03 15.86 <0.0000 0.48 0.62 

Personal care 

α -0.91 0.04 -25.30 <0.0000 -0.98 -0.83 

β 1.47 0.35 4.20 <0.0000 0.77 2.16 

κ 0.53 0.05 11.16 <0.0000 0.43 0.62 

Hearing 
α 0.98 0.05 20.57 <0.0000 0.88 1.07 

β -0.86 0.04 -19.85 <0.0000 -0.95 -0.77 

Sight 

α -1.62 0.10 -15.79 <0.0000 -1.83 -1.42 

β 3.03 0.77 3.95 <0.0000 1.50 4.57 

κ -0.62 0.17 -3.74 <0.0000 -0.95 -0.29 

Females 

  Parameter Parameter estimate Std. Err. t P>t 95% Confidence interval 

Overall disability 

α -0.15 0.03 -4.95 <0.0000 -0.21 -0.09 

β 0.99 0.03 32.27 <0.0000 0.93 1.05 

λ 1.02 0.06 17.47 <0.0000 0.90 1.13 

Locomotor 

α -0.51 0.04 -13.25 <0.0000 -0.58 -0.43 

β 2.33 0.28 8.33 <0.0000 1.77 2.89 

κ 0.46 0.02 20.43 <0.0000 0.42 0.51 

Personal care 

α -0.90 0.03 -31.67 <0.0000 -0.96 -0.84 

β 1.45 0.20 7.15 <0.0000 1.05 1.86 

κ 0.52 0.03 19.08 <0.0000 0.47 0.58 

Hearing 
α 0.93 0.05 17.38 <0.0000 0.82 1.04 

β -1.07 0.05 -21.67 <0.0000 -1.17 -0.97 

Sight 

α -1.33 0.11 -11.61 <0.0000 -1.56 -1.10 

β 1.84 0.48 3.83 <0.0000 0.88 2.79 

κ -1.05 0.31 -3.38 <0.0000 -1.66 -0.43 

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 

A remaining question is whether there are benefits to modelling the sight disability schedule 

using the piecewise model. The R
2
 statistics in table 3 confirm that sight disability is least 

well modelled and as the sight disability curve remains flat until the age of 60 it could be that 

the piecewise approach in equations 9 and 10 offer a more appropriate approach than the 

other relational models. However, the residual sums of squares associated with the piecewise 

Brass relational model (5.83 for males and 5.80 for females) are higher than for the Reduced 
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Ewbank model (5.25 for males and 5.05 for females). We do not select the piecewise Brass 

relational model because it does not appear to offer an improvement in model fit compared to 

a Reduced Ewbank model. 

 

The models recommended by the findings here are shown in Table 6 below. The model 

schedules themselves, along with the observed survey rates, are displayed in figures 4, 5 and 

6. It is encouraging that model fit appears to be reasonable for each disability type across the 

age range. 

 

Table 6 Relational models recommended for each disability type (males and females) 

Disability type Males Females 

Overall disability Reduced Ewbank (λ) Reduced Ewbank (λ) 

Locomotor disability Reduced Ewbank (κ) Reduced Ewbank (κ) 

Personal care disability Reduced Ewbank (κ) Reduced Ewbank (κ) 

Hearing disability Brass Brass 

Sight disability Reduced Ewbank (κ) Reduced Ewbank (κ) 

 

Males Females 
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Fig 4 LLTI schedule (census) and model disability schedules (Males and females – England) 

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 
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Fig 5 Observed and model disability schedules – Overall, locomotor, hearing and sight 

disability (Males) 

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 
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Fig 6 Observed and model disability schedules – Overall, locomotor, hearing and sight 

disability (Females) 

Source: Authors’ calculations using data from the Health Survey for England (2000/2001) and the census (2001) 

 

6. Discussion 

The findings of the previous section illustrate the success of relational models in representing 

disability schedules by adjusting the level and shape of LLTI curves. We now examine the 

model schedules (see Figures 4 to 6) commenting on their robustness in light of other 

research on disability. We also return to the potential application of relational models for 

local estimation of disability noted in the Introduction.  
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Interestingly, the rates of overall disability exceed census LLTI rates at the very oldest ages 

for both males and females. Although this seems counterintuitive, as LLTI includes a broader 

range of limiting conditions than the Health Survey for England measure of disability, it is 

supported in the literature. Bajekal and Prescott (2003) note a ‘crossover’ effect in their 

report on disability in the 2001 Health Survey for England where survey rates of disability 

exceeded survey rates of LLTI at the oldest ages. This crossover effect is attributed to older 

people under-reporting limiting longstanding illness because they consider activity limitation 

a normal consequence of ageing. Additionally, surveys with a health focus, such as the 

Health Survey for England, tend to give higher levels of illness and disability than other 

surveys, such as the census, where information on a range of topics is collected. Finally, 

whilst the census data used here excludes older people in care and residential homes this 

population group are included in the HSE sample. Older people in care homes are more likely 

to have a disability than the private household population providing another reason for the 

higher model rates of disability compared to census rates of LLTI at the oldest ages 

A key difference between the male and female model schedules is a kink in many of the 

model disability schedules for males between the ages of 60 and 65 where the increase in 

rates with age slows before increasing again. This kink is found in the male LLTI curve and 

is preserved for many of the male disability schedules during the modelling process. The 

LLTI retirement kink is a feature noted by other researchers. For example, Bellaby (2006) 

finds a tailing off in the increase in LLTI after retirement ages, particularly for those in 

manual occupations, and a similar result from clinical assessments of health using 

standardised methods (e.g. forced expiratory volume (FEV1), blood pressure (allowing for 

control by medication), and body mass index). Westerlund et al. (2009) report a retirement 

related improvement in self-reported health, particularly for those in poor work 

environments, in a longitudinal study of employees of the French national gas and electric 
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company. A comparison of the observed and model disability schedules (see Figure 5) 

suggests that the transfer of the retirement kink to specific disability types is reasonable. 

Additionally the relational approach appears to have the flexibility to suppress the kink for 

disabilities where it might be less appropriate (e.g. sight disability).  

 

As noted in the Introduction, the relational model specification developed in this paper is 

partly motivated by the data availability in the UK and the potential application of relational 

models to address an information gap; the lack of sub-national estimates of disability. For 

sub-national areas survey data on specific disabilities are either very unreliable due to small 

sample sizes or are unavailable for reasons of disclosure protection. Traditionally relational 

models involve a fixed standard schedule and varying parameter estimates but here sub-

national schedules could be derived from varying standards (local census LLTI schedules) 

with fixed parameter estimates (from national relational models). The underlying assumption 

is that the relationship between LLTI and disability schedules remains constant between 

areas. Marshall (2012b) tests this assumption using national relational parameter estimates to 

generate estimates of HSE disabilities for the nine regions in England. These relational model 

estimates successfully capture the variability in the HSE observed regional disability 

prevalence providing evidence to suggest that the relational models developed in this paper 

have not only applicability to smooth national disability schedules but also as a means to fill a 

local disability information gap. More generally, relational models have applicability to the 

estimation of schedules of other disability types, combinations of disability types, severity of 

disability, or of other health problems that display a strong mortality-like age pattern.  

 

7. Conclusion 
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This paper illustrates that relational models can accurately capture the relationship between 

age-specific rates of LLTI and various disability types. The Brass or Reduced Ewbank 

relational models have sufficient flexibility to adjust the census LLTI schedule to give an 

accurate representation of schedules of overall, locomotor, personal care, hearing, and sight 

disability from the Health Survey for England. This is valuable as relational models offer a 

means to generate a more reliable set of age-specific rates in situations where there is 

evidence of instability in rates directly estimated from survey data. The local availability of 

reliable census LLTI schedules provides a means to derive local disability schedules (where 

direct estimates are unavailable) using relational parameters estimated at higher geographies.  
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Disability Type Survey Question Response Disability 

score 

Locomotor 

What is the furthest you can 

walk on your own without 

stopping and without 

discomfort? 

Only a few steps 

More than a few steps but less than 200m 

More than 200m 

2 

1 

 

0 

Can you walk up and down a 

flight of 12 stairs without 

resting? 

Not at all 

Only if hold on and take rests 

Yes 

2 

1 

0 

Can you, when standing, bend 

down and pick up a shoe from 

the floor? 

No  

Yes 

1 

0 

 

Personal care 

Can you get in and out of bed on 

your own? 

Only with someone to help 

With some difficulty 

Without difficulty 

2 

1 

0 

Can you get in and out of a chair 

on your own? 

Only with someone to help 

With some difficulty 

Without difficulty 

2 

1 

0 

Can you dress and undress 

yourself on you own? 

Only with someone to help 

With some difficulty 

Without difficulty 

2 

1 

0 

Can you wash your face and 

hands on your own? 

Only with someone to help 

With some difficulty 

Without difficulty 

2 

1 

0 

Can you feed yourself, including 

cutting up food? 

Only with someone to help 

With some difficulty 

Without difficulty 

2 

1 

0 

Can you get to and use the toilet 

on your own? 

Only with someone to help 

With some difficulty 

Without difficulty 

2 

1 

0 

Seeing Can you see well enough to 

recognise a friend at a distance 

of four metres (across the road)? 

If no can you see well enough to 

recognise a friend at a distance 

of one metre (at arms length) 

Cannot recognise a friend at 1m 

Can recognise a friend at 1m but not at 

4m 

Can recognise a friend at 4m 

2 

1 

 

0 

Hearing Is your hearing good enough to 

follow a TV programme at a 

volume others find acceptable? 

If not, can you follow a TV 

programme with volume turned 

up? 

Cannot follow a TV programme even with 

the volume turned up 

Can follow a TV programme with the 

volume turned up 

Can follow a TV programme at normal 

volume 

2 

 

1 

 

0 
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Disability Type Survey Question Response Disability 

score 

Communication 

Can you speak without 

difficulty? 

Yes  

No 

1 

0 

Do you have problems 

communicating with other 

people? 

Difficulty communicating with close 

relatives 

Difficulty communicating with other 

people 

No communication problem 

2 

 

1 

 

0 

Table 7: Disability Scores in the Health Survey for England (2001).  

Source: Disability report: Health Survey for England 2001 (Bajekal and Prescott 2003) 

 

 

 


