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Abstract 

Different sorts of auxiliary variables – variables measured at previous waves, frame variables 
and paradata - can be used to improve the accuracy of response propensity models, and to 
enhance adjustments for missing longitudinal data. All these variables are used in this paper 
when constructing iterative probability weights, carrying out multiple imputations, and 
specifying models that jointly model a substantive process and the missingness mechanism. 
Data from the first two waves of the UK Millennium Cohort Study are used to illustrate the 
potential value of auxiliary variables. We find that the accuracy of response probability 
models – as measured by the area under the Receiver Operating Characteristic curve – is 
improved by the inclusion of frame variables and paradata but these variables have rather 
little effect when adjusting the chosen longitudinal estimates. There is, however, evidence 
to suggest that unobserved variables are correlated with the outcome of interest and with 
the probability of being a respondent at wave two. 
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AUXILIARY VARIABLES AND ADJUSTMENTS FOR MISSINGNESS IN LONGITUDINAL STUDIES 

 

The mid twentieth century pioneers of the longitudinal method in the social sciences would 

be impressed by the rising popularity of this kind of study. There is, however, one aspect of 

the longitudinal approach that exercises current practitioners just as much as it did the early 

researchers: the fact that cases are lost from selected samples over time and this loss is 

both cumulative and systematic. There is an increasing recognition in the social sciences, to 

some extent following a trend set in epidemiology (Sterne et al. 2009), that the problems of 

potential bias and loss of efficiency that are associated with missingness should be routinely 

addressed by analysts. The intention of this paper is to make some progress towards a 

resolution of the problems of bias and loss of precision that arise when longitudinal data are 

missing, by drawing on the contribution that different kinds of auxiliary variables can make 

to predicting and adjusting for missingness.   

Apart from the problems of unit and item non-response that are common to all 

observational studies, data can be missing from a longitudinal study for a number of 

reasons: 

1. Some units drop out after the first or subsequent waves, never to return. This is 

attrition; the extent of this absorbing state depends on the resources put into 

tracking, and on procedures relating to which cases are issued to the field at each 

wave. It is often only possible to ascertain attrition cases with certainty at the end of 

a study. 
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2. Some units move in and out of the sample over time. This is wave non-response 

which will only be observed if non-responding cases at wave t are reissued to the 

field at wave t + k (k ≥ 1). 

 

3. Both the attrition cases and the wave non-respondents can be sub-divided into three 

main categories: (i) not located, (ii) not contacted, conditional on being located, and 

(iii) refusing to cooperate, conditional on being contacted (Lepkowski and Couper 

2002). 

 

It is often argued (by, for example, Groves 2006) that the keys to unlocking missingness 

problems of bias are to find those variables that predict whether a piece of data is missing, 

and which of those variables that predict missingness are also related to at least one out of 

possibly many outcomes of interest. In this sense, longitudinal researchers are at an 

advantage compared with analysts of cross-sectional data because they can draw on a wider 

range of potential predictors: 

 

A. Variables of substantive interest that are measured on all the responding cases in 

the first wave of the study (although item non-response might affect some of these 

variables).  

B. As in cross-sectional studies, some information is available from the sampling frame 

for all sampled cases at the first wave. 

C. Variables that are related to aspects of data collection, either derived from 

administrative procedures used, for example, to track sample members over time or, 
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as in cross-sectional studies, from data collected from respondents and interviewers 

during fieldwork.  

 

These three groups of variables are sometimes referred to collectively as auxiliary variables 

although sampling statisticians tend to reserve this term for the variables derived from 

sampling frames and population registers (i.e. group B). Variables in group C are sometimes 

(as here) labelled paradata (Couper 1998), but are also referred to as instruments especially 

in the econometric literature on adjusting for non-response (e.g. Fitzgerald, Gottschalk and 

Moffitt  1998).  

 

Response propensity models, often based on the variables in group A, are widely employed 

to adjust for longitudinal non-response, using inverse probability weights (IPW) derived 

from the estimated probabilities of response from the model. These models can also be 

used to improve applications of procedures that impute missing data, in particular multiple 

imputation. This paper considers the potential added value of using variables from groups B 

and C when adjusting for missingness. It is common to use the frame variables to adjust for 

unit non-response but they are less often used to adjust for missingness after the first wave. 

If we find that the variables in group C, the paradata, appear to improve our adjustment 

methods then this has implications for the kinds of data that might routinely be collected in 

longitudinal studies.  

 

The approach taken in this paper is related to the one taken by Kreuter et al. (2010) who 

focused on cross-sectional survey data. They examine auxiliary variables obtained from 

sampling frames and different kinds of interviewer observations in five surveys and show 
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that very few of these auxiliary variables are strongly associated with both the propensity to 

respond and their outcome variables of interest. Nevertheless, their findings indicate that 

mean-square error in measures of central tendency can be reduced by using IPW derived 

from response propensity models that include these auxiliary variables. Analysts of cross-

sectional surveys are often most interested in the distributions of survey variables but 

longitudinal surveys are designed primarily to measure and model change and so we need 

to determine whether there is any added value from paradata and frame variables when 

applied to the adjustment of measures of change. Kreuter et al. (2010) focus on the use of 

IPW to reduce non-response bias whereas more attention is given here to different kinds of 

models that adjust for missingness. 

 

The rest of the paper is organised as follows. The next section outlines the approach taken 

to predicting non-response and Section 3 describes methods of adjusting for missingness. 

This is followed by a brief description of the study - the Millennium Cohort Study - and the 

underlying research question used to illustrate the ideas in this paper. Section 5 presents 

analyses that show (i) to what extent prediction of non-response is improved by including 

frame variables and paradata and (ii) how these variables can be used to adjust for 

missingness, and what effects they have on estimates of interest.  The concluding section 

includes some discussion of data collection issues. 

 
Predicting non-response 

 
There are many instances in the literature of studies that have modelled the predictors of 

non-response in longitudinal surveys: for example, Behr, Bellgardt and Rendtel (2005); 

Hawkes and Plewis (2006); Watson and Wooden (2009) and, for the Millennium Cohort 
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Study, Plewis (2007a) and Plewis et al. (2008). A defining characteristic of these response 

propensity models is that a binary or categorical outcome is linked to a set of explanatory 

variables, using either a logit or probit link (or their multivariate equivalents).  An important, 

but somewhat neglected topic is how the accuracy of these predictive models should be 

assessed.   This issue is considered in Plewis, Ketende and Calderwood (2012) and so only a 

précis of their discussion is presented here. 

 

A widely used method of assessing accuracy of models for binary or categorical outcomes is 

to estimate the goodness-of-fit by using one of several possible pseudo-R2 statistics. Apart 

from their rather arbitrary nature, which thus makes comparisons across datasets difficult, 

estimates of pseudo-R2 are not especially useful in this context because they assess the 

overall fit of the model rather than distinguishing  between the accuracy of the model for 

discriminating between non-respondents (the true positive rate) and respondents (the true 

negative rate) separately. Consequently, we use a measure based on Receiver Operating 

Characteristic (ROC) curves, illustrated in Fig. 1 as the plot of the sensitivity or true positive 

rate against the false positive rate. Krzanowski and Hand (2009) give a detailed discussion of 

how to estimate ROC curves.  

The area enclosed by the ROC curve and the x-axis in Fig. 1, known as the AUC (area under 

the curve), is of particular interest and this can vary from 1 (when the model for predicting 

non-response perfectly discriminates between respondents and non-respondents) down to 

0.5, the area below the diagonal (when there is no discrimination between the two 

categories). The AUC can be interpreted as the probability of assigning a pair of cases, one 

respondent and one non-respondent, to their correct categories, bearing in mind that 
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guessing would correspond to a probability of 0.5. A linear transformation of AUC (= 2*AUC 

– 1), often referred to as a Gini coefficient, is commonly used as a more natural measure 

than AUC because it varies from 0 to 1. Our interest here is in determining to what extent 

the inclusion of frame variables and paradata in response propensity models increases the 

AUC. 

Adjusting for missingness 

Carpenter and Plewis (2011) set out the three main ways of adjusting for missingness in 

longitudinal studies that are considered here: (i) inverse probability weighting (IPW); (ii) 

multiple imputation (MI); (iii) jointly modelling the substantive process and the missingness 

mechanism. As we shall see, each of these three approaches addresses somewhat different 

combinations of missingness.(1) 

The roots of IPW go back to the application of survey weights to correct for unequal 

selection probabilities as represented by the Horvitz-Thompson estimator. The method is 

based on a model that predicts non-response as just described. The approach is widely used 

to adjust for attrition and wave non-response; it is easily understood and straightforward to 

apply across the board. There are, however, disadvantages to IPW. It is a ‘one size fits all’ 

approach based on adjusting for differential probabilities of responding but ignoring any 

association between the predictors of response and the outcome (and model) of interest 

and consequently has the potential to introduce inefficiencies into the analysis (Little and 

Vartivarian 2005). In addition, it is only possible to estimate weights for cases with complete 

data on the predictors of non-response.(2) Moreover, IPW does not adjust for item non-

response in the outcome and explanatory variables of interest. The fact that weights are 
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estimated (and therefore subject to sampling error) should also be incorporated into 

analyses when the sample size for the response propensity model is not large. 

Imputation methods also have a long history but it is now generally recognised that 

computer-intensive methods of MI are the most satisfactory. Historically, imputation 

methods have been seen as ways of adjusting for item non-response but current thinking, 

especially in a longitudinal context (e.g. Goldstein 2009), indicates that they can be used to 

adjust for attrition and wave non-response as well, given the availability of information from 

previous (and future) waves. The strength of MI is its focus on a model of interest and the 

link between this model and models for missingness. More details of the approach to MI 

taken in this paper are given later after introducing the model of interest.   

Both IPW and MI assume that data are missing at random (MAR), i.e. that missingness is 

ignorable conditional on the chosen set of predictors. This is not an assumption that can be 

supported by the data and there can be grounds for assuming that, in the longitudinal 

context, missingness depends on the wave t value of the variable, even after conditioning 

on measured wave t-k variables. In other words, the missingness mechanism can be 

informative or non-ignorable and then the data are ‘missing not at random’ (MNAR). One 

way of dealing with the problem of non-ignorable missingness is to jointly model the model 

of interest and the missingness mechanism and then either assume something about the 

joint distribution of the residuals (as in Heckman-type models) or introduce further 

information in the form of a prior distribution for the missingness as in the Bayesian models 

used by, for example, Mason et al. (2012) but not considered here. Again, more details are 

given later. 
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The Millennium Cohort Study 

The wave one sample of the UK Millennium Cohort Study (MCS) includes 18,818 babies in 

18,552 families born in the UK over a 12-month period during the years 2000 and 2001, and 

living in selected UK electoral wards at age nine months. As practically all mothers of new-

born babies in the UK were, at that time, eligible to receive Child Benefit, the Child Benefit 

register was used as the sampling frame. The initial response rate was 72%. Areas with high 

proportions of Black and Asian families, disadvantaged areas and the three smaller UK 

countries are all over-represented in the sample which is disproportionately stratified and 

clustered by electoral ward as described in Plewis (2007b). The design weights vary from 2.0 

(England advantaged stratum) to 0.23 (Wales disadvantaged stratum). The first four waves 

took place when the cohort members were (approximately) nine months, 3, 5 and 7 years 

old. Partners were interviewed whenever possible and data were also collected from the 

cohort members themselves and from their older siblings.  

The first two waves of MCS provide the model of interest for this paper, based on work by 

Plewis and Kallis (2008) on the effect of family income on children’s educational attainment. 

The aim here is to establish whether using the extra variables from groups B and C to adjust 

for missingness changes (i) estimates of the mean of the outcome variable of interest, the 

Bracken test of educational preparedness; (ii) estimates of the regression coefficients in 

models that relate this outcome to change in family income between waves one and two. 

Analysing the effects of auxiliary variables 

Predictive models for non-response in the second wave of MCS 

The variables that are potentially predictive of non-response at wave two of MCS are 

divided into three groups corresponding to groups A, B and C described earlier: 
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1. Variables of substantive interest that were measured at wave one and shown to be 

predictive of non-response at wave two by Plewis (2007a). These are described in 

more detail in Appendix 1. 

2. Variables that define the sample design: (i) the nine strata and (ii) the 398 primary 

sampling units (electoral wards). 

3. Paradata:  

(a) Variables collected at wave one but unlikely to be of any substantive interest 

– (i) giving consent to link health records to the interview data (although the 

records themselves will be of substantive interest); (ii) providing a stable address 

for tracking purposes; (iii) refusing to answer the question about family income; 

(iv) either no response or a proxy response from the partner of the main 

respondent. More details can be found in Appendix 1.  

(b) Two variables collected after wave one and substantively important in some 

contexts: (i) whether the family containing the cohort child changed address 

between waves one and two, generated from data collected by the survey 

administration team for tracking purposes and described in more detail in Plewis 

et al. (2008); (ii) an assessment by the survey interviewers of neighbourhood 

conditions at wave two – see Appendix 2 for more details. 

The first aim of the analysis is to show how the accuracy of prediction of (i) overall non-

response; (ii) non-response separated into wave non-response and attrition; (iii) refusal and 

other non-productive (i.e. not located combined with not contacted) separately, changes as 

the variables from groups 2 and 3 above are added to the baseline logistic and multiple 
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logistic models using the variables in group 1. The results are summarised in Table 1 where 

the first row shows the prevalence of overall and different categories of non-response. 

The results for model A are based on binary and multinomial logistic regression models 

using the explanatory variables in group 1 and excluding all aspects of the sample design. 

We see that the overall levels of predictive accuracy are not high generally, although with a 

marked contrast between predicting refusal (Gini estimate = 0.28) and predicting other non-

productives (Gini = 0.47).  

 
The primary sampling units are introduced into models B to D as a random effect (i.e. a 

random intercept) so that we have a two level model (cohort members within electoral 

wards) with two or three outcome categories. The model for three categories is essentially 

the same as that used in a related context by Durrant and Steele (2009): 

 

log�
𝜋𝑖𝑗

(𝑠)

𝜋𝑖𝑗
(0)� = �𝛽𝑘

(𝑠)𝑥𝑘𝑖𝑗 + �𝛾𝑝
(𝑠)𝑧𝑝𝑗 +

𝑃

𝑝=1

𝑢𝑗
(𝑠) (1)

𝐾

𝑘=1

 

where: 

 𝜋𝑖𝑗
(𝑠) = P(𝑦𝑖𝑗 = 𝑠); s = 1, 2 (refusal, other non-productive or wave non-response, attrition) 

and 𝜋𝑖𝑗
(0) is the probability of responding, for household i (i = i..nj ) in cluster j (j = 1..J). Note 

that s = 1 (not responding) for the binary model. 

𝑥𝑘𝑖𝑗 are individual level explanatory variables; 

𝑧𝑝𝑗 are dummy variables defining the nine strata; 
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𝑢𝑗
(𝑠) are random effects at level two representing residual variability between clusters and 

following a bivariate Normal distribution (or a univariate Normal when the outcome is 

binary). 

 All the models were estimated using Markov chain Monte Carlo methods available in the 

MLwiN software (Rasbash et al. 2009; Browne 2009), based on 40000 chains with non-

informative priors throughout and supplemented by orthogonal parameterisation and, for 

the binary models, parameter expansion as described by Browne et al. (2009) to improve 

convergence.  

 

The predicted values 𝑝𝑖𝑗
(𝑠) from equation (1) (used to estimate the AUC and Gini coefficients) 

include the empirical Bayes estimates 𝑢�𝑗
(𝑠)of the proportion of non-response for each cluster 

as follows: 

 

𝑝𝑖𝑗
(𝑠) = exp (∑ 𝑏𝑘

(𝑠)𝑥𝑘𝑖𝑗 + 𝑢�𝑗
(𝑠))/1 + exp [∑  �∑ 𝑏𝑘

(𝑟)𝑥𝑘𝑖𝑗𝐾
𝑘=1 +∑ 𝑐𝑝

(𝑟)𝑧𝑝𝑗 +𝑃
𝑝=1 𝑢�𝑗

(𝑟)�]  (2)2
𝑟=1

𝐾
𝑘=1   

with a simpler version of (2) for the binary model, and where bk and cp are estimates of βk 

and γp. 

 
The results are given for model B in Table 1 and indicate that including the primary sampling 

units explicitly in the model does noticeably improve the accuracy of prediction for the 

different types of non-response (although less so for overall non-response). This 

improvement might have arisen because these second level units carry information about 

the interviewers assigned to them although we do not have enough information about 

interviewer assignment to test this. The estimated between cluster variances and 

covariances are given in Table 2; we see that the cluster level proportions of refusals and 



13 
 

other non-productives are associated (r = 0.36) and this association is more marked for 

attrition and wave non-response (r = 0.76). 

 
A set of eight dummy variables for the strata is added to these models (model C); the 

stratification is related to all types of non-response but including this part of the sample 

design does not improve predictive accuracy.  

 
Turning to model D in Table 1 then, from the variables collected at wave one,  ‘consent’ and 

‘no partner response’ predict all types of non-response; ‘stable address’ predicts only 

attrition and refusal; ‘refusing income’ predicts only wave non-response. Considering the 

two variables collected after wave one, refusals and attrition are less likely when 

households move, and other non-productives and wave non-respondents are less likely if 

households were living in flats at wave one and then move address. The scale generated 

from the neighbourhood observations predicts all types of non-response but predicts wave 

non-respondents and other non-productives better than it does attrition and refusal.(3) The 

addition of the paradata variables (model D) further improves the discrimination of the 

model with estimates of Gini coefficients ranging from 0.45 to 0.61 in Table 1 although there 

are two caveats to these results. The first is that there is a degree of circularity when using 

the residential mobility variable in that not located households are bound to be mobile. 

When the mobility variable is excluded from the ‘other non-productive’ part of the model, 

the Gini coefficient falls, but only from 0.61 to 0.60. Second, the interviewers collected 

observations about the neighbourhood for all cases apart from those that were not located 

at wave two and this limits the applicability of this variable both for prediction and for 

adjusting for missingness. (4) 
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Using frame variables and paradata to adjust for missingness 
 
The question of the effectiveness of frame variables and paradata when adjusting for 

missingness is best considered within the context of a substantive model of interest; here 

the effect of family income on young children’s educational attainment as discussed by 

Plewis and Kallis (2008). We consider data from two waves and regression models of the 

form: 

 
𝑦𝑡𝑖 = 𝑓�𝑥𝑡𝑖, 𝑥𝑡−1,𝑖� + 𝑒𝑖   (3) 
 
The wave two (i.e. t = 2) outcome variable is child i’s score on the Bracken test, the 

explanatory variables are log family income at waves one (x1) and two (x2). Three sub-

models are considered: 

(i) The two income variables enter the model separately. 

(ii) The difference between log income at wave two and log income at wave one, i.e. 

the log of the income ratio, enters the model on its own. 

(iii) The difference in the untransformed incomes enters the model on its own. 

 
Having established that the frame variables and paradata are associated with the propensity 

to respond, we now need to consider whether they are associated with the variables in the 

model of interest.(5)  Table 3 shows that the frame variables and the neighbourhood 

assessment score are associated with the variables in the model of interest but the 

correlations for the other paradata are small (≤ 0.10) and these variables are therefore 

unlikely to make a substantial contribution to adjustments that use either weighting or 

multiple imputation. 
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Applying inverse probability weights 
 

The design weights are combined with the inverse probability weights to generate overall 

weights whose effect can be compared with using just the design weights. We see from the 

first row of Table 4 that the overall mean of the outcome variable is lower once we adjust 

for the estimated probabilities of responding, indicating that children with lower 

attainments are more likely to be missing at wave two. There is a more marked reduction 

when using the weights from model D but these weights are only adjusting for non-

response due to refusals and not contacted given the restriction in the collection of the 

neighbourhood observations.(6) The estimated regression coefficients for sub-model (i) are 

essentially unchanged by the application of non-response weights. The application of weight 

A to sub-models (ii) and (iii) does lead to changes in the estimated coefficients but once the 

effects of the clusters are introduced into the weights, the estimates become closer to the 

estimates based just on the design weights. The differences between the estimates using 

weight B and those using weights C and D for sub-models (ii) and (iii) are small. The 

variability in the overall weights A to D is greater than the variability in the design weights 

although not substantially so, as indicated by the weight range. 

 

Multiple imputation 

We consider two approaches to MI applied to the model of interest (MoI) previously 

introduced. First, we assume multivariate Normality for the variables in the MoI. We then 

apply the data augmentation method, a Bayesian procedure described by Little and Rubin 

(2002: Ch. 10), consisting of two steps that are repeated until convergence is achieved: an 

imputation step in which the missing data is imputed by drawing from a distribution 

generated by the observed data and the model parameters from the previous iteration, and 
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a posterior step in which the model parameters are drawn from a distribution generated by 

the observed data and the missing data imputed in the previous step.  This procedure is 

replicated at least five times and the estimates from each replication are combined using 

Rubin’s rules as described in Carpenter and Plewis (2011). Data augmentation is 

implemented in the mi suite of programs in STATA11 and is used here with uniform prior 

distributions on all the parameters thus making the procedure equivalent to maximum 

likelihood.  

 

Table 5 presents the patterns of missing data for the MoI after eliminating the very few 

cases (n = 237) with missing data (i.e. item non-response) on one or more of the auxiliary 

variables in groups 1 to 3 (with the exception of the neighbourhood assessment score). We 

see that the complete cases (CC) comprise only 59% of all cases and that 12% of the cases 

do not confirm to a monotonic pattern of non-response.  

 
MI is applied to missingness scenarios as represented by models A, C and D in Table 1 but 

without allowing for any influence of the clusters in models C and D. The neighbourhood 

assessment score is included in model D although it becomes part of the imputation process 

because of the missing data for this variable. This does imply that MI is adjusting not only 

for attrition and wave non-response as IPW does but also for item non-response in the 

explanatory variables in the MoI and, if necessary, in the auxiliary variables. However, as 

Little and Zhang (2011) point out, if item non-response in the explanatory variables is 

informative then the assumptions underpinning MI break down and CC analysis might be 

preferred. 
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Table 6 gives the results and shows that, for sub-model (i), there is a small change in the 

estimated coefficient for log family income at wave two and a reduction in the estimated 

standard errors compared with the CC analysis in the first column of Table 4 so that the 

confidence intervals are about 15% narrower. These small gains in efficiency are obtained 

from the variables in group 1; the inclusion of the paradata does not have any effect on the 

point estimates based on MI although the standard errors are slightly higher.  For sub-

models (ii) and (iii), however, we find that MI generates estimates that are different from 

those based on complete cases in Table 4 with the estimate for log income difference being 

reduced whereas the estimate for income difference is substantially higher. Again, including 

the paradata in the model does not change the point estimates but it does reduce the 

standard errors. We return to the possible implications of these results in the concluding 

section. 

 

There are, however, two drawbacks to the data augmentation approach just described. The 

first is the assumption of multivariate Normality that might not always be sustainable. The 

second is that it cannot easily incorporate the effects of the clusters in the data generated 

by the sample design.  Reiter, Raghunathan and Kinney (2006) identify this as a potentially 

serious problem for complex designs. It is, however, possible to deal with the second 

problem using a two level MI method illustrated in Goldstein (2009) that incorporates a 

random effect into both the model of interest and the imputation equations in such a way 

that there is a set of underlying equations for all the variables with missing data, each of 

which includes a random intercept to account for the clustering. Reiter et al. (2006) suggest 

representing the clusters as fixed effects but this is not attractive when there are large 

numbers of clusters.  Thus: 
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𝒚𝑖𝑗 = 𝜷𝟎𝟎 +  ∑ 𝜷𝒌𝑥𝑘𝑖𝑗 + 𝒖𝒋 + 𝒆𝒊𝒋  (4)𝐾

𝑘=1   
 
where y is a vector of p variables measured on case i (i = 1..nj) in primary sampling unit j (j = 

1..J) with, in general, different numbers of cases missing for each yp; xk are the k auxiliary 

variables with no missing data; the β are vectors of regression coefficients; e and u are the 

sets of level one and level two residuals respectively arranged as vectors and uncorrelated 

across levels with e ~ MVN(0, Φ) and u ~ MVN(0, Σ).  

 
It is important to note that the MoI includes a random effect for the sample clusters and so 

the estimated regression coefficients of interest are now pooled within cluster effects rather 

than the combination of within and between cluster effects that characterises the earlier 

models. Estimation proceeds using MCMC as built into the REALCOM-IMPUTE software 

(Goldstein et al. 2008). The results are given in Table 7 and show small effects of applying MI 

in sub-model (i); rather more marked effects of change in income on the education outcome 

compared with the CC analysis and slight changes when the paradata are used. 

 
 

Joint models 

We can jointly model the substantive model of interest and the selection equation, i.e. the 

probability of observing the outcome y, as follows: 
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where (5a) is a multiple regression model with e1 ~ N(0, σ2); Φ is the standard Normal 

distribution function in 5(b) so e2 ~ N(0,1) and (5b) is a probit model; e1 and e2 are bivariate 
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Normal with corr(e1e2) = ρ implying that unobserved variables that are correlated with being 

missing are also correlated with the outcome via e1 and its correlation with e2. The auxiliary 

variables are contained within z and are needed to identify the joint model but z can also 

contain x variables from (5a). Note that, in terms of our example, (5) models both 

missingness due to attrition and wave non-response, and also item non-response in the 

Bracken test, and allows all that missingness to be associated with y conditional on x, i.e. 

MNAR.  Table 5 shows that there are 1077 productive interviews at wave two with a missing 

outcome, information that is also used in MI but not when inverse probability weights are 

applied. In contrast to MI, however, no adjustment is made here for missingness in x and z 

variables. 

 
Models like (5) are discussed in detail by Vella (1998) and maximum likelihood estimates can 

be obtained using the heckman procedure in STATA. The estimates are, however, sensitive 

both to the assumption of bivariate Normality and to the specification of the selection 

model. Table 8 gives the results from models whose specifications are the same as those 

used earlier except that log family income at wave one is included in the selection equation. 

The main points to emerge from the estimates are: 

(i) There are substantial unobserved selection effects as indicated by the high 

negative correlations between the estimated residuals, with unobserved 

variables that increase the probability of not responding and reduce the score on 

the Bracken test. These correlations are not reduced, contrary to expectations, 

by the introduction of the paradata (model D).  

(ii) The estimates for income at wave two conditional on income at wave one are 

lower than those from the CC analysis and do not vary as the specification of the 
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selection equation changes. The estimate for log family income at wave one in 

the selection equation is consistently small. 

(iii) The estimates for log income difference and income difference are higher than 

they are when based on CC but reduced by the inclusion of the paradata. The 

estimates for log family income at wave one in the selection equations are now 

consistently about six times greater than their standard errors. 

 

Discussion 

 
We have seen that when variables of substantive interest that are measured at the first 

wave of a longitudinal study are used in response propensity models, they enable us to 

distinguish between respondents and non-respondents although the degree of 

discrimination is not high. The level of discrimination improves when at least some aspects 

of a stratified and clustered design are included in the model. Moreover, our example 

illustrates that those variables often referred to as paradata can further improve 

discrimination so that the probability of distinguishing a respondent from non-respondents 

of different kinds rises from less than 0.7 to close to 0.8. Thus, if our interest is in preventing 

non-response after the first wave of a longitudinal study, frame variables and paradata 

could help to target more effectively procedures and interventions designed to improve 

response rates.  

 
If, however, our interest is in adjusting for longitudinal missingness both in terms of 

reducing bias and increasing precision in estimates that are specifically concerned with 

measuring and modelling change then our example casts some doubt about the usefulness 

of frame variables and paradata. This is partly because the paradata in particular are not 
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strongly associated with the outcome in the MoI and cannot therefore reduce any bias that 

might be present in the estimates as a result of selective non-response. On the other hand, 

we do see that adjustments for missingness vary in magnitude according to how the model 

relating change to the outcome is specified. When the focus is on the regression coefficient 

of income at wave two conditional on income at wave one then we find only marginal 

changes from the CC estimates in both the point estimates and the standard errors 

regardless of whether weights or MI are used, and irrespective of which variables are used 

in the weighting scheme and the imputations. But when change is represented by a ratio of 

two variables or the difference between them then adjustments for missingness are greater 

and do vary according to which variables are included in the adjustment process. One 

possible explanation for this is that the missingness mechanism for the outcome is close to 

being MAR conditional on income at wave one and no further adjustment is required for 

models like sub-model (i) whereas there is no explicit conditioning on the wave one 

measure when ratios and differences are used. Against that, we do see that the estimate of 

the coefficient of wave two income conditional on wave one income is about 25% lower 

when we allow for unobserved selection effects that are correlated with the outcome, 

suggesting that if the assumptions of the selection model hold then there are aspects of the 

response process which we do not understand and which the available paradata do not 

appear to capture. Paradata do, however, have a potentially important part to play if the 

MAR assumption is not satisfied because their association with response behaviour and 

their irrelevance to the MoI means that they can be useful instruments that help to identify 

the joint model and thus improve the robustness of estimates from these models. This can 

be particularly important when the MoI includes more explanatory variables as controls – as 
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a fuller investigation of the relation between income and educational attainment would do - 

and these explanatory variables also predict non-response. 

 

This paper only considers data and models from two waves of a longitudinal study. A more 

complete understanding of the relation between, say, education and income would come 

from using data from several waves and then modelling the relation both within and 

between individuals as described by Plewis (2001). It would be interesting to explore the 

value of paradata in adjustments for missingness in these circumstances. 

 
It is, of course, possible that the inclusion of other paradata in the adjustment processes 

considered here might have made more of a difference. Candidate variables include the 

length of the interview at wave one, the proportion of questions answered at wave one (a 

variable found to be predictive of non-response by a number of researchers), the reluctance 

of the cohort child to attempt the educational tests, and variables like interviewer gender, 

ethnic group, age and experience.  It is also possible to ask the interviewers to record 

observations about their contact with respondents, and to ask respondents to describe their 

experience of the interview and interviewer. Both these approaches were used in wave four 

of MCS and can be used to predict and adjust for non-response at wave five. On the other 

hand, there is a cost attached to collecting paradata. The question of whether it is cost-

effective to collect more variables of this kind must depend in part on an assessment of the 

possibilities and benefits of reducing the deleterious effects of non-response that they 

bring. One important issue that is widely ignored when considering longitudinal missingness 

is unit non-response at wave one of a longitudinal study. Frame variables can be used to 

make adjustments but are not likely to be adequate in this case. Data from administrative 
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registers are not always available at a case level and good quality paradata generated from 

interviewer observations and interactions with potential respondents might, as Kreuter et 

al. (2010) indicate, play a useful part in adjusting measures and models for change for this 

initial non-response. 
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Footnotes 

(1) A fourth method – calibration as described by, for example, Sikkel, Hox and deLeeuw 

(2009) – is not used in this paper. 

(2) Carpenter and Plewis (2011, p.533) propose a way of reducing this problem by replacing 

missing weights by estimated weights from calibrations. 

(3) Detailed results are available on request. 

(4) Interviewer observations of the neighbourhood were not collected at wave one. 

(5) It is only possible to do this for the observed cases. 

(6)  Weights generated from response propensity models should be applied only if the 

models exhibit ‘common support’ in the sense that there are respondents and non-

respondents across the distribution of propensity scores. All the response propensity 

models referred to in Table 1 satisfy this condition, verified by dividing the distribution into 

twenty bands of equal sample size and tabulating the numbers of respondents and non-

respondents in each band. 
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Figure 1: ROC curve 
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Table 1: AUC and Gini coefficients 

Model Overall 
non-
response 
(19%) 

Non-response (type 1) Non-response (type 2) 

Wave non-
response 
(8%) 

Attrition 
(11%) 

Refusal 
(10%) 

Other non-
productive 
(10%) 

A 0.68 
(0.0049) 
0.36 
(16675) 

0.69 
(0.0075) 
0.38 
(14871) 

0.67 
(0.0067) 
0.35 
(15411) 

0.64 
(0.0071) 
0.28 
(15130) 

0.73 
(0.0066) 
0.47 
(15152) 

B 0.69 
(0.0058) 
0.37 
(16675) 

0.75 
(0.0062) 
0.50 
(14871) 

0.70 
(0.0069) 
0.40 
(15411) 

0.70 
(0.0073) 
0.39 
(15130) 

0.77 
(0.0059) 
0.54 
(15152) 

C 0.69 
(0.0058) 
0.38 
(16675) 

0.74 
(0.0061) 
0.49 
(14871) 

0.70 
(0.0068) 
0.40 
(15411) 

0.69 
(0.0074) 
0.38 
(15130) 

0.76 
(0.0059) 
0.53 
(15152) 

D 0.72 
(0.0056) 
0.45 
(16401) 

0.78 
(0.0091) 
0.56 
(15079) 

0.75 
(0.0068) 
0.51 
(15591) 

0.75 
(0.0063) 
0.51 
(15622) 

0.80 
(0.0077) 
0.61 
(15048) 

1. Each cell gives the AUC (s.e.) followed by the Gini coefficient (sample size). 
Notes 

2. Standard errors based on 100 bootstrap replications. 
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Table 2: Estimated between cluster variances and covariances (with 95% credible 
intervals) 
 

 Variance Covariance 
Unproductive 0.142 (0.095, 0.196) n.a. 
Non-
response 
(type 1) 

Wave non-
response 

0.288 (0.190, 0.404) 0.123 (0.071, 0.182); 
r = 0.76 

Attrition 0.091 (0.049, 0.143) 
Non-
response 
(type 2) 

Refusal 0.191 (0.125, 0.274) 0.078 (0.017, 0.145); 
r = 0.36 Other non-

productive 
0.247 (0.166, 0.347)  

Based on model B, Table 1. 
Note 
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Table 3: Associations with variables in model of interest 
 

 Bracken test(3) Log income, wave 
one 

Log income, wave 
two 

Cluster(1) 0.12 0.20 0.16 
Stratum(2) 0.89 0.91 0.80 
Consent(4) -0.026 -0.036 -0.040 
Stable address(4) 0.071 0.048 0.046 
Refusing income 
question(4) 

-0.015 n.a. -0.023 

No partner response(4) -0.050 0.001 -0.030 
Changed address(4) 0.042 -0.10 -0.071 
Neighbourhood 
assessment(4) 

-0.23 -0.40 -0.37 

(1) Intra-cluster correlation 
Notes 

(2) Range (SD units) 
(3) Square root transformation of standardised score 
(4) Pearson correlations 
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Table 4: Applying overall weights 

 Design 
weights 

Weight 
from 

model A 

Weight 
from 

model B 

Weight 
from 

model C 

Weight from 
model D 

Bracken score (mean 
(s.e.); n) 

0.10 
(0.023); 
13294 

0.080 
(0.023); 
12199 

0.082 
(0.023); 
12199 

0.082 
(0.023); 
12199 

0.075 
(0.023); 
12759 

Sub-
model 

(i) 

Log family 
income, 
wave 1 

(estimate 
(s.e.); n) 

0.21 
(0.019); 
10708 

0.21 
(0.019); 
10650 

0.21 
(0.019); 
10650 

0.21 
(0.019); 
10650 

0.21 
(0.020); 
10315 

Log family 
income, 
wave 2 

(estimate 
(s.e.)) 

0.19 
(0.017) 

0.19 
(0.017) 

0.19 
(0.017) 

0.19 
(0.017) 

0.19 
(0.017) 

Sub-
model 

(ii) 

Log income 
difference 

0.045 
(0.017) 

0.040 
(0.015) 

0.047 
(0.018) 

0.047 
(0.017) 

0.048 
(0.017) 

Sub-
model 

(iii) 

Income 
difference 

0.0025 
(0.00077) 

0.0037 
(0.00074) 

0.0028 
(0.00079) 

0.0028 
(0.00079) 

0.0027 
(0.00079) 

Weight range 0.23 – 2.0 0.20 – 3.7 0.20 – 3.4 0.20 – 3.1 0.21 – 
3.7  
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Table 5: Missing value patterns 
 

Log family income, 
wave 1 

Bracken score Log family income, 
wave 2 

Frequency (%) 

1 1 1 10628 (59) 
1 1 0 1544 (8.5) 
1 0 0 3390 (19) 
1 0 1 1077 (5.9) 
0 1 1 686 (3.8) 
0 1 0 295 (1.6) 
0 0 1 98 (0.54) 
0 0 0 430 (2.4) 

 

1 = present; 0 = missing. 
Note 
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Table 6: Estimates from MI (1) 

 Model A Model C Model D 
Sub-model (i) Log family 

income, wave 1 
(estimate (s.e.)) 

0.21 (0.014)  0.21 (0.014) 0.21 (0.016) 

Log family 
income, wave 2 
(estimate (s.e.)) 

0.20 
(0.014) 

0.20 
(0.013) 

0.20 
(0.015) 

Sub-model (ii) Log income 
difference 

0.041 (0.015) 0.040 (0.015) 0.041 
(0.014) 

Sub-model (iii) Income 
difference 

0.0035 
(0.00076) 

0.0035 
(0.00076) 

0.0035 
(0.00074) 

n = 18148; based on 20 imputations; MCMC burn in = 1000; 10 iterations between draws. 
Notes 
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Table 7: Estimates from MI (2) 
 

 No 
imputation 

(CC) 

Model A Model C Model D 

Sub-model (i) Log family income, 
wave 1 (estimate 

(s.e.)) 

0.18 (0.015) 0.16 (0.014)  0.16 (0.014) 0.17 (0.015) 

Log family income, 
wave 2 (estimate 

(s.e.)) 

0.16 (0.013) 0.17 
(0.014) 

0.17 
(0.014) 

0.17 
(0.013) 

Sub-model 
(ii) 

Log income 
difference 

0.038 (0.013) 0.039 (0.012) 0.045 (0.014) 0.040 
(0.013) 

Sub-model 
(iii) 

Income difference 0.0023 
(0.0007) 

0.0024 
(0.0008) 

0.0024 
(0.0006) 

0.0025 
(0.0007) 
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Table 8: Estimates for MoI from joint model 
 

 Model A Model C Model D 
Sub-model (i) Log family 

income, wave 1 
(estimate (s.e.)) 

0.14 (0.016) 0.15 (0.016) 0.17 (0.016) 

Log family 
income, wave 2 
(estimate (s.e.)) 

0.14 
(0.013) 

0.14 
(0.013) 

0.14 
(0.014) 

Estimated correlation -0.69 (0.019) -0.69 (0.019) -0.71 (0.018) 
Sub-model (ii) Log income 

difference 
0.056 (0.013) 0.055 (0.013) 0.048 

(0.013) 
Estimated correlation -0.81 

(0.0098) 
-0.80 

(0.0099) 
-0.81 (0.010) 

Sub-model (iii) Income 
difference 

0.0030 
(0.00067) 

0.0030 
(0.00067) 

0.0028 
(0.00068) 

Estimated correlation -0.80 
(0.0099) 

-0.80 (0.010) -0.81 (0.010) 

Sample sizes (response; non-resp.) 10650; 4476 10650; 4476 10315; 3253 
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Appendix 1 

 

 Potential predictors of non-response (group 1) 

 

1. Family income (6 ordered categories: 1.8%; 26%; 33%; 20%; 14%; 5.0%) 

2. Ethnic group of cohort child (White British (83%); Mixed (3.0%); Indian (2.5%); 

Pakistani/Bangladeshi (6.9%); Black/Black British (3.6%); Other (1.4%)) 

3. Accommodation type (House (85%); other (15%)) 

4. Tenure (Own (58%); rent (36%); other (6.4%)) 

5. Main respondent’s age (< 30 (50%); 30+ (50%)) 

6. Main respondent’s educational qualifications (None (20%); NVQ1-5 (3.3%; 12%; 

8.4%; 9.3%; 44%); other/overseas (2.8%)) 

7. Cohort child breast fed (Yes: 67%) 

8. Longstanding illness, main respondent (Yes: 21%) 

9. Parental status (2 (83%) or 1 parent family (17%)) 

10. Main respondent voted in last general election (Yes: 51%) 

 

Potential predictors of non-response (group 3) 

1. Gave consent to record linkage (Yes: 93%) 

2. Provided a stable address at wave one (Yes: 82%) 

3. Missing family income, wave one (8.7%) 

4. No or proxy partner response (11%) 
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Appendix 2 

 

 Interviewer assessments of the neighbourhood, MCS wave 2. 

 

For each visit they made to the household, the wave two interviewers responded to 11 

questions about the general state of the neighbourhood and on whether they felt safe or 

unsafe when they visited the household. This information was gathered for both responding 

and non-responding households across the UK. Up to 15 visits were made in some cases. In 

most cases, however, the interviewer gave the same answer regardless of how many times 

they visited the property and so there was no evidence that interviewers’ perceptions 

changed according to the time of day or day of the week that they were in the area. 

Consequently, the data used here come from the first visit to each household. 

The scoring for the summary score is as follows:  

Assessment item Category Score 

1. How would you rate the 
general condition of most of 
the residences or other 
buildings in the street? 

Well kept, good repair and 
exterior surfaces 
Fair condition 
Poor condition, peeling paint, 
broken windows 
Badly deteriorated 

0 
 
1 
2 
 
2 

2. Do any of the fronts of 
residential or commercial 
units have metal security 
blinds, gates or iron bars & 
grilles? 

None 

Some 

Most 

0 

1 

2 

3. Are there any traffic 
calming measures in place 
on the street? 

No traffic permitted 
Light traffic 
Calming + moderate traffic 
No calming+ moderate 
Calming + heavy traffic 
No calming +heavy 

0 
0 
0 
1 
1 
2 

4. How would you rate the 
volume of traffic on the 
street? 
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5. Are there any burnt-out 
cars on the street? 

No 

Yes 

0 

2 

6. Is there any of the 
following: rubbish, litter, 
broken glass, drug related 
items, beer cans etc, 
cigarette ends or discarded 
packs - in the street or on 
the pavement? 

None or almost none 

Yes, some 

Yes, just about everywhere 
you look 

0 

1 

2 

 

7. Is there any graffiti on 
walls or on public spaces like 
bus shelters, telephone 
boxes or notice boards? 

No 

A little 

A lot 

0 

1 

2 

8. Is there dog mess on the 
pavement? 

None 
Some 
A lot 

0 
1 
2 

9. Is there any evidence of 
vandalism such as broken 
glass from car windows, bus 
shelters or telephone boxes? 

No 

Yes 

0 

2 

10. Are there any adults or 
teenagers in the street or on 
the pavements arguing, 
fighting, drinking or 
behaving in any kind of 
hostile or threatening way? 

No-one seen in the street or 
pavement 
None observed behaving in 
hostile ways 
Yes, one or two arguing etc. 
Yes, at least one group of 
three or more 

0 
 
0 
 
1 
 
2 

11. How did you feel 
parking/walking /waiting at 
the door in the street? 

Very comfortable, can 
imagine living/ 
working/shopping here 
Comfortable - a safe and 
friendly place   
Fairly safe and comfortable  
I would be uncomfortable 
living/working/shopping here 
 I felt like an outsider, looked 
on suspiciously  
I felt afraid for my personal 
safety 

0 

 

0 

1 

2 

2 

2 

 

The summary score can vary from zero to 20 but very few scores over 10 were obtained as 

shown in Table A3.1. 
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Table A3.1: Distribution of neighbourhood assessment score (n = 16594) 

Score 0 1 - 3 4 - 6 7 – 10 >10 
% 34 42 16 6 2 
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