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Abstract 
 
 
 

The omnipresence of non-response in longitudinal studies is 
addressed by assessing the accuracy of statistical models 
constructed to predict different types of non-response. Particular 
attention is paid to summary measures derived from receiver 
operating characteristic curves and logit rank plots as ways of 
assessing accuracy. The ideas are applied to data from the first four 
waves of the UK Millennium Cohort Study and the results suggest 
that our ability to discriminate and predict non-response is not high. 
Changes in socio-economic circumstances do predict wave non-
response with implications for the underlying missingness 
mechanism. Conclusions are drawn in terms of the potential of 
interventions to prevent non-response and methods of adjusting for it. 
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1. Introduction 
 
Designers and managers of longitudinal studies have to put into operation 
strategies for preventing sample loss over time. Despite the designers’ often 
heroic efforts, however, analysts of longitudinal data must deal with the problem 
of missingness. Ideally, they do this by generating information about why data 
are missing and then combining this information with statistical techniques that 
adjust for the missingness. The focus of this paper is on how we can learn more 
about missingness by assessing the accuracy of models that predict the different 
kinds of, and different reasons for non-response that affect longitudinal studies. 
Knowledge from these models – and from estimates of their accuracy - can then 
be exploited in three ways. First, in the construction and evaluation of weighting 
schemes designed to remove biases from estimates for variables of interest, 
variables that are often associated with the systematic non-response usually 
found in these studies. Second, they can be used to generate imputations both to 
remove bias and also to improve the precision of estimates of interest. Third, the 
models can be used to predict who might be responders and non-responders at 
future waves of a study and thus to consider targeting or tailoring fieldwork 
resources to those respondents who might otherwise be lost from the study. 
 
This paper is built around a framework for assessing the accuracy of models that 
account for variability in non-response outcomes, i.e. non-response propensity 
models. This framework is widely used in epidemiology and criminology to 
generate risk scores but has not, to our knowledge, been used in survey 
research before. We apply it to address the following three questions: 
 

1) How is the accuracy of non-response propensity models best assessed? 
 
2) Can the accuracy of non-response propensity models at a particular wave 

be enhanced by using variables measured at later waves? 
 

3) How accurate are the propensity models at an early wave if they are 
applied to non-response at later waves? 

 
There are many instances in the literature of studies that have modelled the 
predictors of non-response in longitudinal surveys, stimulated by the fact that 
these models can draw on measures obtained from sample members before 
(and, as we shall see, after) the occasions at which they are non-respondents. 
See, from many possible examples, Lepkowski and Couper (2002) for an 
analysis that separates refusals from not being located or contacted; Hawkes 
and Plewis (2006) who analyse data from the UK National Child Development 
Study and who separate wave non-respondents from attrition cases; and, of 
particular relevance here, Plewis (2007a) and Plewis et al. (2008) who consider 
non-response in the first two waves of the UK Millennium Cohort Study, 
described in more detail below. The accuracy of models of this kind for prediction 
has not, however, been given the amount of attention it warrants in terms of their 
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ability to discriminate between respondents and non-respondents, and to predict 
future non-response. 
 
The paper is organised as follows. The framework for assessing accuracy is set 
out in the next section. Section 3 introduces the UK Millennium Cohort Study and 
propensity score methods are illustrated using data from this study in Section 4. 
Implications of the findings for preventing non-response and for statistical 
adjustment for missingness are then considered; Section 6 concludes. 
 

2. Models for predicting non-response 
 
It is relatively straightforward to specify and estimate models for explaining both 
overall non-response and also different kinds of non-response, i.e. wave non-
response and attrition; and failure to locate, to contact (conditional on location) 
and to cooperate (conditional on contact). A typical model for a binary outcome is 
the one proposed by Hawkes and Plewis (2006): 
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where: 
)( itit rE=!  is the probability of not responding for subject i at wave t with itr  = 0 for 

a response and 1 for non-response, and f is an appropriate function such as logit 
or probit. 
i = 1..n where n is the observed sample size at wave one. 
t = 1..Ti where Ti is the number of waves for which itr  is recorded for subject i. 
xpi are fixed characteristics of subject i measured at wave one, p = 0..P; x0 = 1 for 
all i. 
*
, ktqix !  are time-varying characteristics of subject i, measured at waves t-k, q = 

1..Q, k = 1,2! Often k will be 1. 
ktriz !,   are time-varying characteristics of the data collection process, measured 

for subject i at waves t-k, r = 1..R, k = 0,1... Often k will be 1 but can be 0 for 
variables such as number of contacts before a response is obtained. 
 
This model can easily be extended to more than two response categories such 
as {response, wave non-response, attrition}. Other approaches are also possible. 
For example, it is often more convenient to model the probability of not 
responding just at wave t = t* in terms of variables measured at earlier waves t* - 
k, k " 1 or, when non-response is monotonic (implying there is no wave non-
response), to model time to attrition as a survival process. 
 
The estimated probabilities (pit) from equation (1) can be used to generate 
inverse probability weights wit (=1/pit) and these are widely applied to try to adjust 
for biases arising from non-response under the assumption that data are missing 
at random (MAR) as defined by Little and Rubin (2002). 
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2.1 Assessing the accuracy of predictions 
 
Regardless of the method that is used to construct a function estimated from a 
generalised linear model like (1) that links the response categories to the 
explanatory variables, a key question remains: how accurate is the model? We 
can think of these functions as risk scores (Copas, 1999) or propensity scores 
(Little and Rubin, 2002) and we can then ask about the accuracy of these scores. 
A widely used method of assessing accuracy is to estimate the goodness-of-fit of 
models for binary or categorical outcomes by using one of several possible 
pseudo-R2 statistics. Apart from their rather arbitrary nature, which thus makes 
comparisons across datasets difficult, pseudo-R2 are not especially useful in this 
context because they assess the overall fit of the model and do not distinguish 
between the accuracy of the model for the respondents and non-respondents 

separately.  
 
As the epidemiological literature emphasises (e.g. Pepe, 2003), there are two 
related components of accuracy: classification (or discrimination) and prediction. 
Classification refers to the conditional probabilities of having a propensity score 
(s) above a chosen threshold (h) given that a person either is or is not a non-
respondent. Prediction, on the other hand, refers to the conditional probabilities 
of being or becoming a non-respondent given a propensity score above or below 
the threshold.  

More formally, let D and 
!
D  refer to the presence and absence of the poor 

outcome (i.e. non-response) and define + (s > h) and – (s # h) as positive and 
negative tests derived from the propensity score and its threshold. Then, for 
classification, we are interested in P(+|D), the true positive fraction (TPF) or 

sensitivity of the test, and P(-|
!
D ), its specificity, equal to one minus the false 

positive fraction (1 – FPF). For prediction, however, we are interested in P(D|+), 

the positive predictive value (PPV) and P(
!
D |-), the negative predictive value 

(NPV). If the probability of a positive test (P(+) = $) is the same as the prevalence 
of the poor outcome (P(D) = %) then inferences about classification and 
prediction are essentially the same. With $ = %, sensitivity equals PPV and 
specificity equals NPV. Generally, however, {TPF, FPF, %} and {PPV, NPV, $} 
convey different pieces of information. 
 
The TPF (i.e. sensitivity) can be plotted against FPF (i.e. 1 - specificity) for any 
risk score threshold h. This is the receiver operating characteristic (ROC) curve 
(Figure 1). The ROC curve is always anchored at coordinates (0, 0) and (1,1) 
and, for large samples and at least some continuously measured predictors, it is 
smooth with a monotonically declining but always positive slope. Krzanowski and 
Hand (2009) give a detailed discussion of how to estimate ROC curves. The 
diagonal line joining the point [0, 0] (sensitivity = 0, specificity = 1: everyone is 
predicted to be a respondent so the threshold on the probability scale is one) to 
[1, 1] (sensitivity = 1, specificity = 0: everyone is predicted to be a non-
respondent so the threshold is zero) is the ROC that would be obtained if the 
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variables used to construct the risk score do not explain any of the variation in 
the outcome.  Consequently, it is the AUC – the area enclosed by the ROC curve 
and the x-axis in Fig. 1 – that is of interest and this can vary from 1 (perfect 
discrimination) down to 0.5, the area below the diagonal (no discrimination). The 
AUC can be interpreted as the probability of assigning a pair of cases, one 
respondent and one non-respondent, to their correct categories, bearing in mind 
that guessing would correspond to a probability of 0.5. A linear transformation of 
AUC (= 2*AUC – 1) - sometimes referred to as a Gini coefficient and equivalent 
to Somer’s D rank correlation index (Harrell, 1996) - is commonly used as a more 
natural measure than AUC because it varies from 0 to 1. 
 
 

 
Figure 1: ROC curve 
 
Copas (1999) proposes using the logit rank plot as an alternative to the ROC as 
a means of assessing the predictiveness of a risk or propensity score. If the 
propensity score is derived from a logistic regression then a logit rank plot is just 
a plot of the linear predictor from the logistic regression model against the logistic 
transformation of the proportional rank of the propensity scores as shown in 
Figure 2. More generally, it is a plot of logit(pi) where pi is the estimated 
probability from any form of (1) i.e. )¦( z,*xx,DP , against the logits of the 
proportional ranks (r/n) where r is the rank position of case i (i = 1..n) on the 
propensity score. This relation is usually close to being linear and its slope – 
which can vary from zero to one - is a measure of the predictive strength of the 
propensity score. Copas argues that the slope is more sensitive to changes in 
the specification of the model underpinning the propensity score and to changes 
in the prevalence of the outcome than the Gini coefficient is. The slope is scale-
independent and can therefore be used to compare the predictive strength of 
different propensity scores for the outcome of interest. A good estimate of the 
slope can be obtained by calculating quantiles of the variables on the y and x 
axes and then fitting a simple regression model. 
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One issue to bear in mind when assessing Gini coefficients and logit rank plot 
slopes is that they are both subject to shrinkage: they will be lower when applied 
to a new set of cases. The degree of shrinkage is directly proportional to the 
number of explanatory variables in the model but inversely proportional to the 
sample size (Copas, 1999; Copas and Corbett, 2002). As the sample size of the 
dataset we use here to illustrate the methods is very large, shrinkage will be 
minimal. 
 

 
Figure 2: Logit rank plot: illustration 
 
It is also possible to estimate, from (1), d1 at wave t*: the difference between the 
means of the estimated linear predictors, and d2 - the difference between the 
means of the predicted probabilities (pi) of not responding - for non-respondents 
and respondents: 
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where b, c and d are vectors of estimated coefficients (i.e. &, ' and ( from (1)), 
1!= fpi )( * dZcXbX iii ++  and NRnR

n

i
irNR !="

=
=

1
;  

We would expect dk (k = 1,2) to be positive but it is not clear how much greater 
than zero dk should be for a model to be useful, nor how values of dk should be 
compared across studies. A problem with d1 is that it is not bounded; also, it will 
vary according to the chosen function f. The same arguments would hold were dk 
to be defined in terms of ratios rather than differences. 
 
The extent to which propensity scores discriminate between respondents and 
non-respondents can be used as an indication of how influential, and possibly 
how effective our statistical adjustments are going to be. A lack of discrimination 
suggests either that there are important predictors missing from the propensity 
score or that a substantial part of the process that drives the missingness is 
essentially random. The extent to which propensity scores predict whether a 
case will be a non-respondent in subsequent waves – and what kind of non-
respondent they will be - is an indication of whether any intervention to reduce 
non-response, how ever well designed and targeted, will be successful. 
 
 

3. The Millennium Cohort Study 
 

The wave one sample of the UK Millennium Cohort Study (MCS) includes 18,818 
babies in 18,552 families born in the UK over a 12-month period during the years 
2000 and 2001, and living in selected UK electoral wards at age nine months. As 
practically all mothers of new-born babies in the UK were at that time eligible to 
receive Child Benefit, the Child Benefit register was used as the sampling frame. 
The initial response rate was 72%. Areas with high proportions of Black and 
Asian families, disadvantaged areas and the three smaller UK countries are all 
over-represented in the sample which is disproportionately stratified and 
clustered as described in Plewis (2007b). The first four waves took place when 
the cohort members were (approximately) nine months, 3, 5 and 7 years old. 
Partners were interviewed whenever possible and data were also collected from 
the cohort members themselves and from their older siblings.  
 
3.1 Sample loss from the Millennium Cohort Study 
 
Table 1 shows how the MCS sample has diminished over time after wave one. 
The sample loss consists of wave non-respondents – cases that are missing at 
wave t but not at one or more subsequent waves – and attrition cases that, once 
missing, have not reappeared. It is not possible definitively to allocate all cases to 
one of these two non-response categories until the end of the study but Table 1 
does indicate that sample loss from the MCS, in common with most longitudinal 
studies in the social sciences, consists of a mixture of wave non-response and 
attrition and is therefore not monotone. Table 1 also shows that non-respondents 
are equally divided between refusals and other non-productives (not located, not 
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contacted etc.) at wave two but that refusal becomes more dominant thereafter. 
There is an association between type of, and reasons for non-response: 62% of 
the attrition cases but only about one third of the wave non-respondents are 
refusals. The proportion of not located cases within the heterogeneous ‘other 
non-productive’ group rose from about 40% for waves two and three to 61% in 
wave four. Note that the eligible sample size – which excludes child deaths and 
emigrants - increased between waves two and three because some cases 
omitted at wave one in England were recruited for the first time at wave two. 
 
Table 1: Sample loss from MCS after wave one by non-response type 
 

 Wave 2, age 3 yrs Wave 3, age 5 yrs Wave 4, age 7 yrs 
(i) Wave non-

response 
9.0% 3.4% n.a. 

(ii) Attrition 10% 16% n.a. 
Total (= i + ii = iii+ iv) 19% 20% 26% 

(iii) Refusal 9.5% 12% 19% 
(iv) Other non-

productive 
9.5% 7.3% 7.4% 

Eligible sample size 18,385 18,944 18,756 
n.a.: not applicable as wave non-response is undefined at the most recent wave. 
 

4. Analyses of non-response 
 
In this section, we use MCS data to answer the three broad questions about 
accuracy posed in the Introduction. 
  
4.1 Accuracy of classification and prediction 
 
Research reported in Plewis (2007b) and Plewis et al. (2008) on the predictors of 
different types of non-response in the MCS is summarised in Table 2. We see 
that variables measured at wave one that are associated with attrition are not 
necessarily associated with wave non-response (and vice-versa). The same is 
true for correlates of refusal and other non-productives. The estimate of 0.39 for 
the Gini coefficient for overall non-response is relatively low: it corresponds to an 
AUC of 0.69 which is the probability of correctly assigning (based on their 
predicted probabilities) a pair of cases (one respondent, one non-respondent), 
indicating that classification of (or discrimination between) non-respondents and 
respondents from the propensity score is not especially good. Classification is 
slightly better for wave non-respondents than it is for attrition and notably better 
for other non-productive than it is for refusal (although this is partly because the 
moving residence variable and not being located are so closely related). These 
estimates were obtained from pair-wise comparisons of each non-response 
category with being a respondent. A similar picture emerges when we look at the 
slopes of the logit rank plots although these bring out more clearly the differences 
in predictiveness for the different types of non-response. The pattern of estimates 
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for d1 is in line with those from the ROC and logit rank plots but this not true for d2 
(for example, the estimate for attrition is higher than it is for wave non-response), 
suggesting that comparing mean estimated probabilities from models like (1) 
might be misleading. We do not consider d1 and d2 further. 
 
The correct specification of models for explaining non-response can be difficult to 
achieve. New candidates for inclusion in a model can appear after the model and 
the corresponding inverse probability weights have been estimated and 
disseminated, others remain unknown. How much effect on measures of 
accuracy might these new variables have? Here, we examine the effects of 
adding three new variables to the MCS models: (i) whether or not respondents 
gave consent to having their survey records linked to health records at wave one; 
(ii) a neighbourhood conditions score varying from zero to 20 and derived from 
interviewer observations at wave two (see Appendix N of Edwards et al. (2006) 
for more details); and (iii) whether, at wave one, the main respondent reported 
voting at the last UK general election. The first two of these variables were not 
available for the analyses summarised in Table 2 but there are grounds for 
supposing that they might be important: refusing consent at wave t might be 
followed by overall refusal at wave t + 1, and non-response might be greater in 
poorer neighbourhoods. The voting variable was suggested as an indicator of 
social engagement that might also be related to the probability of responding. 
Although the neighbourhood conditions score was obtained for productive cases, 
refusals and non-contacts it could not, inevitably, be obtained for cases that were 
not located. Hence, we use this variable just for the model that compares 
refusals with productives. 
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Table 2: Explanatory variables for non-response, MCS wave two 
 

Wave one explanatory 
variable (1) 

Overall non-
response (3) 

Wave 
non-

response (4) 

Attrition (4)  Refusal (5) Other 
non-

productive (5) 

Moved residence after 
wave one 

! ! " " ! 

UK country ! ! ! ! ! 
Family income ! " ! ! " 
Refused to answer income 
qn. 

! " " ! " 

Ethnic group ! ! ! " ! 
Tenure ! ! ! " ! 
Accommodation type ! ! ! ! ! 
Mother’s age ! ! ! ! ! 
Education ! ! ! ! ! 
Provided stable address ! " ! ! ! 
Cohort member breast fed ! ! ! ! ! 
Longstanding illness ! ! ! ! ! 
Partner present ! ! ! ! ! 
Partner but no interview ! ! ! ! ! 
Sample size 18,230 16,210 16,821 16,543 16,513 
AUC (2) 0.69 0.71 0.69 0.68 0.76 
Gini (2) 0.39 0.42 0.38 0.37 0.52 
Logit rank plot: slope (2) 0.45 0.51 0.44 0.40 0.63 
d1 0.53 0.65 0.51 0.46 1.0 
d2 0.078 0.054 0.057 0.049 0.097 
Notes 
(1) See Plewis (2007) and Plewis et al. (2008) for more details: !, related to non-
response category; ", not related to non-response category. 
(2) 95% confidence limits for AUC, Gini coefficient and logit rank plot slope 
generally ± 0.02. 
(3) Based on a logistic regression, allowing for the survey design using the svy 
commands in STATA. 
(4) Based on a multinomial regression with three categories, allowing for the 
survey design and with the sample size based on the sum of the productive and 
relevant non-response category. 
(5) Based on a multinomial regression with three categories, allowing for the 
survey design and with the sample size based on the sum of the productive and 
relevant non-response category. 
 
Table 3 presents the results. We see that each of the three variables is 
associated with at least one kind of non-response. The accuracy of the 
propensity scores is, however, little changed by the inclusion of extra variables 
except for refusal where the inclusion of the three new variables does make a 



 12 

difference; the estimate of the Gini coefficient increases from 0.37 to 0.42 and 
the slope of the logit rank plot increases from 0.40 to 0.45 (although missing data 
for the neighbourhood conditions score does reduce the sample size).   
 
Table 3: Accuracy estimates for enhanced models, MCS wave two 
 
Accuracy 
measure 

Overall 
non-

response (1) 

Wave 
non-

response (2) 

Attrition (3) Refusal (4) Other 
non-

productive 
(5) 

AUC 0.70 0.71 0.71 0.71 0.76 
Gini 0.40 0.43 0.41 0.42 0.53 
Logit rank 
plot: slope 

0.47 0.52 0.47 0.45 0.65 

Sample 
size 

18,148 16,177 16,745 15,656 16,443 

Notes 
(1) Includes consent (odds ratio (OR) = 2.1, s.e. = 0.20) and vote (OR = 1.4, s.e. = 
0.08) variables. 
(2) Includes vote variable only (OR = 1.4, s.e. = 0.11), consent not important (t = 
1.33; p > 0.18). 
(3) Includes consent (OR = 2.7, s.e. = 0.26) and vote (OR = 1.4, s.e. = 0.09). 
(4) Includes consent (odds ratio (OR) = 2.6, s.e. = 0.32), vote (OR = 1.3, s.e. = 
0.10) and neighbourhood score (OR = 1.03, s.e. = 0.014) variables. 
(5) Includes consent (odds ratio (OR) = 1.6, s.e. = 0.20) and vote (OR = 1.5, s.e. = 
0.11) variables. 
 
4.2 Classifying wave non-respondents using data from subsequent waves 
 
It is possible to use variables measured at waves t + k, and changes between 
waves t – k and t + k (k ! 1) in models for discriminating between wave non-
response and being productive at wave t. If such variables do discriminate – and 
are ignored – then it is more likely that missingness for wave non-response will not 
be at random (i.e. MNAR) in the sense that changes after wave t – 1 predict 
missingness at wave t. It is not, of course, possible to establish this for the attrition 
cases. If, however, changes from say t – 1 to t + 1 are incorporated into an 
imputation model then this would strengthen the MAR assumption usually required 
for multiple imputation. 
 
We find that change in accommodation type and in partnership status between 
waves one and three are both associated with wave non-response at wave two 
with wave non-response greater when a partner is lost (OR = 1.7, s.e. = 0.18), and 
less when a partner is acquired (OR = 0.72, s.e. = 0.11), and also less with any 
change in type of accommodation (OR = 0.57, s.e. = 0.09). Classification is slightly 
improved with the Gini coefficient rising from 0.43 to 0.46. The slope of the logit 
rank plot goes up from 0.52 to 0.55.  
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4.3 Alternative strategies for classifying and predicting non-response 
 
One of the difficulties faced by analysts wishing to use inverse probability weights 
to adjust for non-response is that, ideally, the weights need to be re-estimated at 
each wave. The search for new predictors of non-response at each wave, re-
estimating the model and then recalculating the inverse probability weights before 
archiving them for secondary analysts can, however, be time-consuming. 
Consequently, it is worth investigating whether the changes in the non-response 
weights after wave two are likely to be sufficiently large to justify recalculation at 
each subsequent wave. Here we focus on wave four of MCS and consider to what 
extent discrimination between response categories changes as model specification 
varies by comparing estimates of Gini coefficients and slopes of logit rank plots for 
four models for overall non-response based on: 
 

1. The wave one variables used in the response propensity model at wave 
two, the wave one values of these variables and the wave one coefficients, 
i.e. applying exactly the same wave two model to wave four outcomes, 
without any re-estimation. 

2. The wave one variables, the wave one values, but the wave three 
coefficients, i.e. re-estimating the wave two model using the same data as 
at wave two but with the wave four response categories as the outcome. 

3. The wave one variables, but the wave three values of those variables and 
the wave three coefficients, i.e. using the same explanatory variables for 
non-response as were used at wave two. 

4. Variables measured up to and including at wave three, i.e. starting afresh. 
 
Clearly the amount of analytic work required increases from model 1 to model 4. 
We find that only four of the 15 wave one variables that were associated with non-
response at wave two are not associated with wave four non-response. The 
estimated Gini coefficients and logit rank plot slopes at wave four for the first three 
models are (0.36; 0.47: n = 17819), (0.37; 0.44: n = 17819) and (0.37; 0.41: n = 
14257), not substantially smaller than the estimates (0.40: 0.47) at wave two for 
the model that includes the voting and consent variables (Table 3). Model four 
includes one new variable – the cohort child’s score on a cognitive test with lower 
scores associated with more non-response – along with 10 of the variables used at 
wave two. The relevant estimates are (0.37; 0.42: n = 13790) indicating that 
essentially no discrimination is gained by using this wave three variable. Note also 
that item non-response leads to a substantial decrease in sample size for the third 
and fourth strategies and this is a general difficulty when constructing non-
response weights. 
 
It is not entirely surprising that discrimination is so little affected by changes in 
model specification because about half of the non-respondents at wave four had 
also been non-respondents at wave two. In addition, 8.8% of the respondents at 
wave four had been non-respondents at wave two. For prediction (and therefore 
possibly intervention) we are more interested in the cases that become non-
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responders after wave two, particularly those who appear to be permanently lost 
from the study. We find that 6% of the eligible productive sample at wave two are 
non-respondents at both waves three and four. The predictors of these ‘attrition’ 
cases are generally similar to those given in Table 2 together with the consent and 
vote variables described in Section 4.1. In addition, child cognitive test scores at 
wave two are associated with this attrition which declines as test scores increase. 
The slope of the logit rank plot (0.48; 95% CI: 0.47 to 0.49) is very close to the 
value presented in Table 3 (i.e. 0.47) for the cases missing at waves two, three 
and four. 
  

5. Discussion 
 
Survey methodologists, particularly those working with longitudinal data, have 
long been exercised by the problem of non-response. Nearly all longitudinal 
studies suffer from accumulating non-response over time and it is common even 
for well-conducted mature studies to obtain data for less than half the wave one 
target sample. On the other hand, non-response researchers have learned a lot 
about the correlates of different types of non-response by exploiting available 
data – sometimes known as auxiliary variables - from earlier waves. The main 
purpose of this paper has been to introduce a different way of thinking about the 
utility of the approaches that generally rely on binary and multinomial logistic 
regressions to construct inverse probability weights and to inform imputations. 
We suggest treating the linear predictors from the logistic regressions as 
response propensity scores and, by so doing, enabling the methods for 
summarising the information in these scores to be used to assess the 
possibilities both for classifying and for predicting different kinds of non-response. 
 
ROCs and their associated summary statistics offer a valuable way of assessing 
the ability of a model to discriminate between respondents and non-respondents 
and hence to compare models both within and across studies. The application of 
this approach to data from the Millennium Cohort Study has shown that, despite 
using a wide range of explanatory variables, discrimination is on the low side. 
There are two, not necessarily exclusive, implications of this finding. One is that 
some non-response is generated by a myriad of circumstantial factors, none of 
them important on their own, which we can reasonably regard as chance. There 
is some support for this hypothesis in that the accuracy of the models for overall 
non-response, wave non-response and other non-productive (the latter two being 
related) were little changed by the introduction of the voting and consent 
variables. On the other hand, these variables (and the neighbourhood conditions 
score) did improve the discrimination between productives, and attrition cases 
and refusals (which are also related). Nevertheless, discrimination for these two 
categories remained lower than for the other types of non-response. 
 
A second possible implication is that the models do not discriminate well because 
data are missing not at random (MNAR) in Little and Rubin’s (2002) sense. In 
other words, it is changes in circumstances after the previous wave that 
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influences non-response at the current wave. These changes are generally 
unobserved – except for the wave non-respondents. The finding of an increase in 
discrimination when changes in partnership status and accommodation type 
were added to the model for wave non-response at wave two provides some 
support for the hypothesis that missingness might be informative and that the 
assumption of MAR might not hold.  
 
Another conclusion to emerge from the application of the methodology, albeit just 
from one study, is that the functions used to generate inverse probability weights 
at wave two might reasonably be used at subsequent waves without sacrificing 
much in the way of discrimination. This would also have the advantage of 
avoiding the problem of missing weights that arises when variables from later 
waves (when more data are missing) are included in the non-response models. It 
would be useful to determine whether this finding is replicated on other studies, 
particularly panel studies where annual revisions of non-response weights can be 
expensive.   
 
Turning to prediction, we argue that measures based on simple comparisons 
across categories of the estimated mean linear predictor and the estimated 
probabilities are not especially helpful, mainly because they are not scale-
invariant. This problem does not affect the slope of the logit rank plot which also 
has the advantage of being bounded by zero and one. The implications of our 
findings for prediction are that it might not be generally possible to predict which 
cases will become non-respondents with a high degree of accuracy. In turn, this 
suggests that effective interventions might be difficult to target efficiently.  
 
If interventions to prevent non-response in longitudinal studies are to be effective 
then they need to be based on sound theoretical and empirical foundations, the 
latter ideally coming from randomised experiments, and they ought to be costed. 
But interventions also need to be targeted at those cases most likely not to 
respond. This is where the ROC approach can be especially useful because, as 
Swets et al. (2000) show, it is possible to determine the optimum threshold for 
the response propensity score based on the costs and benefits of intervening 
according to the true and false positive rates implied by the threshold. A more 
detailed assessment of these issues is beyond the scope of this paper but would 
include considering interventions to prevent different kinds of non-response and 
the benefits of potential reductions in both bias and variability arising from a 
larger sample. It could also draw on the work of Pepe et al. (2008) who argue 
that a plot of the probability (or risk) of being a non-respondent against the 
quantiles of the risk score – the predictiveness curve – is a useful way of 
describing risk and of comparing propensity models. 
 

6. Conclusions 
 
Three main points emerge from this paper. The first is that using a framework that 
is constructed around different kinds of conditional probabilities and response 
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propensity scores generates summary measures of accuracy like Gini coefficients 
and slopes of logit rank plots that enable us to make comparisons across models 
that predict non-response. These comparisons provide a means of assessing the 
usefulness of introducing extra predictors into the models and of comparing 
predictiveness and discrimination for different kinds of non-response.  
 
The second point is that models developed to generate non-response weights at 
wave two of a study might be satisfactory to use at later waves. If this point were 
supported by further investigations then this would suggest that efforts to estimate 
fresh non-response models at each wave might be misplaced. 
 
The final point relates to the implications of our results for statistical adjustment 
other than by using inverse probability weights. We find that our models of 
missingness are, for wave non-respondents, improved by including variables from 
a later wave and therefore these variables could be included in a selected 
imputation process for a particular model of interest. Moreover, the fact that some 
of the important explanatory variables for non-response are variables that are 
unlikely ever to feature in a model of interest – providing a stable address, for 
example - means that they might be used as identifying instruments in a joint 
Heckman-type model that considers the models of interest and missingness 
simultaneously and thus allows for non-ignorable missingness. Carpenter and 
Plewis (2011) provide an example. 
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