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1) Introduction

Socio-economic variables are very  often categorical, rather than interval scale.  In 
many  cases research focuses on models where the dependent variable is 
categorical. For example, the dependent variable might be ‘unemployed’ / 
‘employed’, and we could be interested in  how  this variable is related to sex, age, 
ethnic group, etc. In this case we could not  carry  out a multiple linear  regression 
as many  of the assumptions of this technique will not  be met, as will be explained 
theoretically  below. Instead we would carry  out a  logistic regression analysis. 
Hence, logistic regression may  be thought  of as an approach that is similar to that 
of multiple linear regression, but takes into account the fact that the dependent 
variable is categorical.

Categorical data and 2 x 2 tables

We can write categorical data in two forms: list form or table form. The important 
point to make about this is that whichever way  we choose to think about this kind 
of data, the information is the same. For example, if we were interested in the 
association between unemployment and sex for  a sample of 12  people (this is a 
smaller sample than we would tend to use in general but it  illustrates the point), 
we could write the data in list form as: 

OBS  UNEM FEMALE

1   0  0
2  0  1
3   0  1
4  0  1
5    0  0
6  1   1
7   0 
 1         
8  1   0
9  0  0
10  0  1
11   0  0
12  1   0
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Or the same data in table form as:

UNEM NOT UNEM TOTAL
MALE 2 4 6
FEMALE 1 5 6
TOTAL 3 9 12

 

2  x 2  tables are quite a good way  to present the information, because the 
relationship between the two variables can usually  be clearly  interpreted. When 
we are interested in the association between several variables we can, of course, 
still construct a multi-way  table. However, it is less easy  to interpret  the 
relationships from the tables when several variables are involved. 

Example 1

We will now consider an example from Plewis, I (1997), Chapter 5.

Table 1.

Ethnic Group
Behaviour

Problems

White Black Total

NO 90 [0.83] 30 [0.48] 120 (70%)
YES 19 [0.17] 33 [0.52]  52 (30%)
Total 109 (63%) 63 (37%) 172 (100%)

Table 1  is a cross tabulation of two binary  variables for a sample of 172 boys in 
reception classes.

• Whether or  not the child is perceived by  their teacher to have a behaviour 
problem (which we will later model as the response).

• Ethnic group (which we will later model as the explanatory variable).
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We can see that  the majority  of the sample of boys (70%) are not perceived to 
have a  behaviour problem and that 63% of them are white.  The conditional 
probabilities of having a behaviour problem, given ethnic group are shown in 
square brackets after  each of the cell frequencies.  For example the probability  of 
being perceived to have a behaviour  problem for white boys is 0.17, and for  black 
boys is 0.52.

Odds and Relative Odds 

A useful way  of using the information in cross tabulations where one dimension 
of the table is an outcome of interest (whether 2x2  tables or  more complicated 
ones), is to calculate odds and relative odds (odds ratios).

Odds

In the above table, the odds of a white boy  being seen to have a behaviour 
problem are 19/90 = 0.21  or 0.21  to 1.  In betting terms that is about 5 : 1  against 
– much less than even money. 
For black boys, the corresponding odds are 33/30 = 1.1, or 1.1 to 1.
Equivalent to 11  to 10 on, (or a little better than even money.). Note that odds are 
not the same as probabilities – they are not restricted to the range 0 to 1.  

Relative odds

We can also think of  the information in the table in terms of relative odds. The 
relative odds of a  black boy  compared with a  white boy  being seen as having a 
behaviour problem  are 1.1  / 0.21  or  5.2 to 1.  In other words a  black boy  is 5.2 
times more likely  than a white boy  to be seen as having a behaviour problem. 
Equally, boys perceived to have behaviour  problems are 5.2 times more likely  to 
be black rather  than white, compared with boys without perceived behaviour 
problems. Relative odds are symmetrical in that sense; like correlation, we do not 
think of this measure in terms of a  dependent variable and an explanatory 
variable. We just think in terms of the association between two variables.

Exercise 1

Suppose we are interested in the relationship between unemployment and ethnic 
group for a sample of 18 year olds and we have the following data

Unemployed at 18? Ethnic group
TOTALWhite Black

No 1700 40 1740
Yes 112 8 120
Total 1812 48 1860
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Calculate the probabilities, odds and relative odds of being unemployed at 18 for 
white and black ethnic groups

2) Logistic regression theory

Introduction

When we want to look at a dependence structure, with  a  dependent variable and a 
set of explanatory  variables (one or more),  we can use the logistic regression 
framework. 

Multiple linear regression may  be used to investigate the relationship between a 
continuous (interval scale) dependent variable, such as income, blood pressure or 
examination score. However,  socio-economic variables are very  often categorical, 
rather than interval scale.  In many  cases research focuses on models where the 
dependent variable is categorical. For example, the dependent variable might  be 
‘unemployed’  or ‘not’ (as we saw in Exercise 1) ,  and we could be interested in 
how this variable is related to sex, age, ethnic group, etc. In this case we could not 
carry  out a multiple linear  regression as many  of the assumptions of this 
technique will not  be met, as will be explained theoretically  below. Instead we 
would carry out a logistic regression. 

The Theory

If we wrote the ‘perceived behaviour  problems’ table as data in list  format, we 
would be interested in  modelling the variation in the probability  of being 
perceived to have behaviour  problems, and for  the table data  we are interested in 
modelling the variations in the proportions with perceived behaviour  problems 
amongst black boys compared with  white boys.  It is important to note that 
regardless of whether we consider  the analysis in terms of data in a list  or a table, 
the results will be exactly the same. 

Proportions and probabilities are different from  continuous variables in a 
number of ways. They  are bounded by  0 and 1, whereas in  theory  continuous 
variables can take any  value between plus or minus infinity. This means that we 
cannot assume normality  for a  proportion, and we must recognise that 
proportions have a binomial distribution. Unlike the normal distribution, the 
mean and variance of the Binomial distribution are not independent. The mean is 
denoted by  P and the variance is denoted by  P*(1-P)/n, where n is the number of 
observations,  and P is the probability  of the event occurring  (e.g. the probability 
of being unemployed, or having ‘perceived behavioural problems’) in any  one 
‘trial’ (for  any  one individual in this example). If we were considering the data in 
‘list’ rather than table form  we would assume that the variable had a mean P and 
a variance P*(1-P) and this variable would have a Bernoulli distribution. 
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When we have a proportion as a  response, we use a  logistic or logit 
transformation to link the dependent  variable to the set of explanatory  variables. 
The logit link has the form:

Logit (P) = Log [ P / (1-P)] 

The term within the square brackets is the odds of an event occurring. In the 
example above this would be the odds of a person being perceived to have 
behaviour problems. 

Using the logit scale changes the scale of a proportion to plus and minus infinity, 
and also because Logit (P) =  0, when P=0.5.  When we transform our results back 
from the logit (log odds) scale to the original probability  scale, our predicted 
values will always be at least 0 and at most 1.

Logistic regression theory

Let:

Then we can write the model:

In our example Pi  is the probability  of being perceived as having behaviour 
problems, and xi is the boy’s ethnic group. Therefore the parameter β0 gives the 
log odds of a white boy  being perceived to have behaviour problems (when xi =0) 
and β1 shows how these odds differ for black boys (when xi =1). 

We can write the model in terms of odds as: 

Pi/(1-Pi) = exp(β0 + β1xi)

Or in terms of the probability  of the outcome (e.g. perceived behaviour  problems) 
occurring as:

Pi= exp(β0+β1xi)/(1 + exp(β0+β1xi))

Conversely the probability of the outcome not occurring is 
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1- Pi  =  1/(1 + exp(β0+β1xi))

Notice that  we have so far not included a  residual term in the models, and have 
instead expressed the model in terms of population probabilities. But we could 
write it as:

pi = Pi + fi = exp(β0+β1xi)/(1 + exp(β0+β1xi)) + fi

Note that in this case, fi is not normally  distributed, as it was assumed to be for 
linear regression.

Returning to Example 1: perceived behavioural problems by ethnic 
group

We will now consider  some logistic regression theory  and return to Example 1, 
session 1.

Ethnic Group
Behaviour
Problems

White Black Total

NO 90 [0.83] 30 [0.48] 120 (70%)
YES 19 [0.17] 33 [0.52]  52 (30%)
Total 109 (63%) 63 (37%) 172 (100%)

We can fit a logistic regression model to the data in Table 1. We get:

Logit P = -1.56 + 1.65EG

Which we can interpret as the log  odds of a  white boy  (EG=0) seen as having a 
behaviour problem being equal to –1.56, hence the odds of a  white boy  having a 
behaviour problem are: exp(-1.56) = 0.21

The log odds of a black boy  (EG=1) having a perceived behaviour problem are –
1.56  + 1.65 =  0.09. Hence the odds of a black boy  having a  perceived behaviour 
problem are exp(0.09) = 1.1  Alternatively  we can say  that the odds for black boys 
are exp(1.65)=5.21  times as high as they  are for  white boys. That is, the relative 
odds of a  teacher perceiving a black boy  to have behavioural problems compared 
with a black boy are 5.21.

Notice that these results correspond exactly  to the results in Table 1. This is 
because for Table 1  there is one degree of freedom: we can calculate the degrees 
of freedom  in the table as (r-1)*(c-1) =  1, where r is the number of rows in  the 
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table and c is the number  of columns. So if we fit one parameter (ethnic group, 
EG) we have used up, or saturated,  all the degrees of freedom  and hence fitted a 
saturated model. This means we have fitted enough terms in the model to explain 
everything that is going on in Table 1.  Before we fitted the ethnic group term, we 
could not have explained everything that is going on in  the table,  and we would 
hence find a deviance (or  –2  log likelihood) of 22.8. The deviance is a measure 
of how much variation is left having fitted the model (how much is left 
unexplained by  the model). The deviance follows a chi2 distribution and we would 
in  general compare the difference in deviance in two models to find out if the 
extra terms we added were significant.  In the current example,  we cannot really 
talk in  terms of ‘change in deviance’ because once we have fitted EG to the model, 
we have fitted a saturated model,  and the deviance is 0, but in general, assessing 
the change in deviance is a very  useful way  of assessing whether we need to add 
extra terms to our model. In the workshop examples we will see how this works 
in much more detail.

Dummy variables

When an explanatory  variable is categorical we use dummy  variables to contrast 
the different categories.  For  each variable we choose a baseline category  and then 
contrast all remaining categories with the base line.  If an explanatory  variable 
has k categories, we need k-1  dummy  variables to investigate all the differences in 
the categories with respect to the dependent variable.

For example suppose the explanatory variable was housing tenure coded like this:

Tenure

 1: Owner occupier
 2: renting from a private landlord
3: renting from the local authority

We would therefore need to choose a baseline category  and create two dummy 
variables.  For example if we chose owner occupier as the baseline category  we 
would code the dummy variables like this

Tenure: D1 D2
Owner occupier 0 0
Rented private 1 0
Rented local authority 0 1

For  logistic regression SPSS can create dummy  variables for us from categorical 
explanatory variables, as we will see later. 
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Exercise 2

Write down a statistical model to investigate the relationships in the 
following table

Unemployed Ethnic group
TOTALAfro Caribbean Pakistani Indian

No 50 40 45 135
Yes 9 5 4 18
Total 59 45 49 153
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3) Logistic regression in SPSS 13

These data are taken from the British Election Study  2005 pre-campaign and 
post-election panel data. More information:

http://www.essex.ac.uk/bes/

We will consider the propensity  to vote (sometimes called ‘turnout’) as the 
dependent variable,  which has 2 categories. 0=did not  turn out to vote, 1  turned 
out to vote.

We will consider  turnout in relation to three explanatory  variables: gender,  age 
and housing tenure of the respondent. Turnout is known to be lower  amongst 
young people in western democracies,  and may  also be associated with tenure 
and gender. We will use logistic regression to investigate the extent of the 
association between the propensity  to turn out to vote, with  respect to gender, 
age and tenure in the 2005 election data.

But first some exploratory  data  analysis: we will check the distributions of each  of 
the variables and do some filtering of the data and re-coding of the variables.

NB: the dataset which we will use here is called turnout1.sav.

http://www.essex.ac.uk/bes/
http://www.essex.ac.uk/bes/
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frequency of turnout from unfiltered data shown below.

We will now filter the dataset  so that it only  contains those people who either 
answered yes or no to “did you vote in the general election 2005?".
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Frequency of turnout from filtered data:

We will now recode the bq12a variable into another variable called ‘vote2005’ 
which we will recode as 0=didn’t turn out to vote, 1=did turn out to vote.  This will 
enable us to model the probability  of turning out to vote,  which is the response 
we require.
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Frequencies
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Histogram of age
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Question why are some bars much lower than their neighbours? 
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Cross tabulations
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From these results we can see that:

The conditional probability of male turning out to vote are 1346/1837 = 0.733 

(which we note that when multiplied by 100 is  equal to the row % in this table, 
given the way the cross tab is organised).

The conditional probability of female turning out to vote are 1729/2316 = 0.747
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The odds of a male turning out to vote are:

1346/491 = 2.741

The odds of female turning out to vote are 

1729/587 = 2.945

relative odds (female: male) are 

(1729/587) / (1346/491) = 1.074

We will now cross tabulate vote2005 and housing tenure. 



25

From  this table we can see that, according to these data, owner  occupier  (‘owns’) 
are much more likely  to turnout to vote than renter (‘rents’). The conditional 
probability  of owner  occupier turning out to vote is 0.805 whereas for renters it is 
0.569. 

(If time permits, please work out the odds and relative odds for owns and rents). 

There are a total of 49  people who describe their housing tenure as neither ‘owns’ 
or ‘rents’. 
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A scatterplot of the relationship between age and the proportion at each age 
turning out  to vote shows that there is a much higher chance of turning out to 
vote when you are older. 

The relationship between  age and propensity to turn out to vote 
(using the variable vote2005mean).



27

Line of best fit: linear

Line of best fit: quadratic
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Logistic regression models

We can access the logistic regression procedure in SPSS  as follows:

vote2005 is our dependent variable. We begin by  adding gender  – a categorical 
variable (which is coded on the dataset as 1=male, 2=female). We must ensure 
that the fact  that gender is a  categorical variable is declared in our  analysis and 
we must choose the reference category. We will choose the first category, male, as 
the reference category as is shown below.
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Now Click on Continue and then OK to run the model!

We can see from  the table above that we are modeling 4156 cases here (some 
cases are deleted from  the analysis where information is missing. The SPSS 
default for this is listwise. Only  cases where all dependent and explanatory 
variables are complete are included in the analysis.). The tables below show  us 
firstly  that we have coded our dependent variable in the right direction and 
secondly  that the categorical variable for  gender has reference category  of male. 
The (1) means that gender (1) in the results refers to female here.
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Block 0: Beginning Block
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Block 1: Method = Enter

Adding one variable to the 

We have added one new variable to the model, which has reduced the -2 log 
likelihood by  1.018 with 1  degree of freedom. The -2  log likelihood is a measure of 
how well the model explains variations in the outcome of interest, in  this example 
turnout.  The -2 log likelihood (sometimes called,  deviance) has a chi squared 
distribution. The p value for  the result of adding gender to the model is given in 
the table above and we can see that this is 0.313  which is greater  than the 
conventional significance level of 0.05. hence we would conclude that the 
addition of gender to the model is not statistically  significant.  In other words this 
variable does not explain variations in turnout. 



33

We see from the table above that the estimated model is 

As we have recoded gender to 0=male, 1=female, this is equivalent to:

We can see that the coefficient of gender is non-significant (sig = 0.313 > 0.05). 

The Exp(B) column shows the relative odds (odds ratio) and indicates that 
females are 1.074 times as likely  to turnout to vote than males. We can request a 
confidence interval for this result as shown below.
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The confidence interval for  exp(B) is 0.935 to 1.235 indicates that  females are 
between 0.935 and 1.235 times as likely  to turn out to vote than females.  i.e. the 
range has a  lower  limit of ‘slightly  less than males’ and upper limit of ‘slightly 
more than males’ and therefore includes ‘males and females are equally  likely  to 
turn out to vote (i.e. exp(B)=1). This is not surprising since we have already 
concluded that gender has no statistically  significant  explanatory  power in 
explaining variations in turnout. We will now  add an additional variable to the 
model – age in years (which is a  continuous variable, rather than a categorical 
one).

We will  make use of the ‘block’ procedure to add age to the model,  so that we can 
see both the effect  of adding age alone on the -2 log likelihood as well as seeing 
how a model which includes both age and gender might explain variations in 
turnout.
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Block 2: Method = Enter

The addition of age to the model has, as a single variable, reduced the -2 log 
likelihood by  300.666 on 1  degree of freedom. The model, which now contains 2 
parameters, gender  and age has collectively  reduced -2  log likelihood by  301.684 
but  we can see it is age that has the explanatory  power, and gender is not adding 
anything extra.

the model which includes gender and age explains between 7 and 10% of the 
variation in turnout.
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the model is now:

logit(vote2005) = -.779 + .077gender(1)+.037age

The age coefficient is statistically  significant. Exp(B) for age is 1.038, which 
means for each  year different in age, the person is 1.038 times more likely  to turn 
out to vote,  having allowed for  gender  in the model. Eg. a  21  year old is 1.038 
times as likely  to turn out to vote than a 20 year  old. This might not seem  much 
of a difference but a 20 year difference leads to a person being 1.038^20 = 2.11 
times more likely  to turn out  to vote.  E.g. a 40 year old is 2.11  times more likely  to 
turn out to vote than a 20 year old, having allowed for gender in the model. 

We can add housing tenure to the model, as ‘block 3’ tenure is a categorical 
variable, as was gender. By  declaring it as categorical we can set up dummy 
(indicator) variables and make the first category ‘owns’ the reference category:
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Click on Continue and then OK to run the model again.
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Block 0: Beginning Block
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Block 1: Method = Enter
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Block 2: Method = Enter
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Block 3: Method = Enter

We can immediately see that tenure reduces the -2 log likelihood by 174.499 
having added 2 new variables (tenure has 3 categories in all so we need 2 dummy 
variables). Tenure is statistically significant in this model.
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The table above shows us that the estimated model is now:

logit (vote2005) = -.326 + .101gender(1) + .034age – 1.053tenure(1) - .
324tenure(2)

in other words

logit (vote2005) = -.326 + .101female + .034age – 1.053rents - .324neither

tenure(1) which contrasts ‘rents’ with ‘owns’ has an exp(B) of 0.349 which means 
that a person who rents is only  .349 times (i.e. much less) likely  to turn out  than a 
person who owns their  own property, having allowed for  gender and age. If we 
calculate the inverse of exp(B) here,  i.e. 1/0.349 =  2.87, we can say  that  a person 
who owns their own home is 2.87  times more likely  to vote than someone who 
rents, having allowed for gender and age. 

4)  Summary and further comments

Summary

We have seen how  logistic regression analysis may  be used to analyse tabular 
data where one of the dimensions of the table is an outcome of interest.  This 
morning, we looked at some examples where we calculated the probabilities, odds 
and relative odds from  the table, and we have seen how  we can also calculate 
these (and get the same results) from  the model parameter estimates. Some 
theory  was introduced and we saw how the logistic model framework is a  good 
way  to investigate associations in multi-way  tables where one of the dimensions 
of the tables is an outcome of interest, with two categories.

We have seen how we can use SPSS to fit  logistic regression models to data using 
an example based on the 2005 UK election. We covered main effects models and 
models with interactions and we went through the output that SPSS gives us, 
including the classification table, the deviance, the model coefficients and other 
useful measures such as exp(B),  which gives the relative odds or  odds ratio for a 
particular explanatory  variable, given the other  explanatory  variables in the 
model.

Further comments
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The term ‘generalised linear model’ is used to describe a procedure for 
transforming the dependent  variable so that the ‘right hand side’ of the model 
equation can be interpreted as a ‘linear combination’ of the explanatory variables: 

In situations where the dependent (y) variable is continuous and can be 
reasonably  assumed to have a  normal distribution we do not transform the y 
variable at all and we can simply run a multiple linear regression analysis.

In situations where the dependent variable is dichotomous or  0/1  as we have seen 
today  the most common procedure is to use logistic regression, using the logit 
link as we have done today. Other similar types of modelling include probit 
modelling. (See Dobson, McCullagh  and Nelder  for  further details – details of 
these references in the reading list).

When the response variable has several categories we can use a model that allows 
for several categories in the response variable such  as multinomial regression. If 
this response variable is ordinal (as opposed to nominal) we can allow for  this in 
the modelling  (see Agresti – reference details in reading  list). An  alternative is to 
recode the response variable into just two categories and do a logistic regression 
analysis (or to fit several logistic regression models to different pairs of categories 
in  the response variable, although this is not as statistically  efficient  as doing  a 
true multinomial analysis.

Note also that logistic regression models can also be fitted with multilevel 
components in MLwiN and STATA.
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