Binary Logistic Regression

Mark Tranmer Mark Elliot

Cathie Marsh Centre for Census and Survey Research

CONTENTS

1) Introduction	
Categorical data and 2 x 2 tables	3
Odds and Relative Odds	
Odds	5
Relative odds	
2) Logistic regression theory	6
Introduction	6
The Theory	6
Logistic regression theory	7
Dummy variables	9
Exercise 2	10
3) Logistic regression in SPSS 13	
4) Summary and further comments	
Summary	
Further comments	
Reading list	

1) Introduction

Socio-economic variables are very often categorical, rather than interval scale. In many cases research focuses on models where the dependent variable is categorical. For example, the dependent variable might be 'unemployed' / 'employed', and we could be interested in how this variable is related to sex, age, ethnic group, etc. In this case we could not carry out a multiple linear regression as many of the assumptions of this technique will not be met, as will be explained theoretically below. Instead we would carry out a **logistic regression** analysis. Hence, logistic regression may be thought of as an approach that is similar to that of multiple linear regression, but takes into account the fact that the dependent variable is categorical.

Categorical data and 2 x 2 tables

We can write categorical data in two forms: list form or table form. The important point to make about this is that whichever way we choose to think about this kind of data, the information is the same. For example, if we were interested in the association between unemployment and sex for a sample of 12 people (this is a smaller sample than we would tend to use in general but it illustrates the point), we could write the data in *list form* as:

0

OBS	UNEM	FEMALE
1	0	0
2	0	1
3	0	1
4	0	1
5	0	0
6	1	1
7		
1		
8	1	0
9	0	0
10	0	1
11	0	0
12	1	0

Or the same data in table form as:

	UNEM	NOT UNEM	TOTAL
MALE	2	4	6
FEMALE	1	5	6
TOTAL	3	9	12

 2×2 tables are quite a good way to present the information, because the relationship between the two variables can usually be clearly interpreted. When we are interested in the association between several variables we can, of course, still construct a multi-way table. However, it is less easy to interpret the relationships from the tables when several variables are involved.

Example 1

We will now consider an example from Plewis, I (1997), Chapter 5.

<u>Table 1.</u>

Behaviour	White Black I		Total
Problems			
NO	90 [0.83]	30 [0.48]	120 (70%)
YES	19 [0.17]	33 [0.52]	52 (30%)
Total	109 (63%)	63 (37%)	172 (100%)

Table 1 is a cross tabulation of two binary variables for a sample of 172 boys in reception classes.

- Whether or not the child is *perceived* by their teacher to have a behaviour problem (which we will later model as the response).
- Ethnic group (which we will later model as the explanatory variable).

We can see that the majority of the sample of boys (70%) are not perceived to have a behaviour problem and that 63% of them are white. The conditional probabilities of having a behaviour problem, given ethnic group are shown in square brackets after each of the cell frequencies. For example the probability of being perceived to have a behaviour problem for white boys is 0.17, and for black boys is 0.52.

Odds and Relative Odds

A useful way of using the information in cross tabulations where one dimension of the table is an outcome of interest (whether 2x2 tables or more complicated ones), is to calculate *odds* and *relative odds* (odds ratios).

Odds

In the above table, the odds of a white boy being seen to have a behaviour problem are 19/90 = 0.21 or 0.21 to 1. In betting terms that is about 5:1 against – much less than even money.

For black boys, the corresponding odds are 33/30 = 1.1, or 1.1 to 1.

Equivalent to 11 to 10 on, (or a little better than even money.). Note that odds are not the same as probabilities – they are not restricted to the range 0 to 1.

Relative odds

We can also think of the information in the table in terms of relative odds. The relative odds of a black boy compared with a white boy being seen as having a behaviour problem are 1.1 / 0.21 or 5.2 to 1. In other words a black boy is 5.2 times more likely than a white boy to be seen as having a behaviour problem. Equally, boys perceived to have behaviour problems are 5.2 times more likely to be black rather than white, compared with boys without perceived behaviour problems. Relative odds are symmetrical in that sense; like correlation, we do not think of this measure in terms of a dependent variable and an explanatory variable. We just think in terms of the association between two variables.

Exercise 1

Suppose we are interested in the relationship between unemployment and ethnic group for a sample of 18 year olds and we have the following data

Unemployed at 18?	Ethnic	e group		
	White	Black	TOTAL	
No	1700	40	1740	
Yes	112	8	120	
Total	1812	48	1860	

Calculate the probabilities, odds and relative odds of being unemployed at 18 for white and black ethnic groups

2) Logistic regression theory

Introduction

When we want to look at a dependence structure, with a dependent variable and a set of explanatory variables (one or more), we can use the logistic regression framework.

Multiple linear regression may be used to investigate the relationship between a continuous (interval scale) dependent variable, such as income, blood pressure or examination score. However, socio-economic variables are very often categorical, rather than interval scale. In many cases research focuses on models where the dependent variable is categorical. For example, the dependent variable might be 'unemployed' or 'not' (as we saw in Exercise 1), and we could be interested in how this variable is related to sex, age, ethnic group, etc. In this case we could not carry out a multiple linear regression as many of the assumptions of this technique will not be met, as will be explained theoretically below. Instead we would carry out a logistic regression.

The Theory

If we wrote the 'perceived behaviour problems' table as data in list format, we would be interested in modelling the variation in the probability of being perceived to have behaviour problems, and for the table data we are interested in modelling the variations in the proportions with perceived behaviour problems amongst black boys compared with white boys. It is important to note that regardless of whether we consider the analysis in terms of data in a list or a table, the results will be exactly the same.

Proportions and probabilities are different from continuous variables in a number of ways. They are bounded by 0 and 1, whereas in theory continuous variables can take any value between plus or minus infinity. This means that we cannot assume normality for a proportion, and we must recognise that proportions have a binomial distribution. Unlike the normal distribution, the mean and variance of the Binomial distribution are not independent. The mean is denoted by *P* and the variance is denoted by $P^*(1-P)/n$, where n is the number of observations, and P is the probability of the event occurring (e.g. the probability of being unemployed, or having 'perceived behavioural problems') in any one 'trial' (for any one individual in this example). If we were considering the data in 'list' rather than table form we would assume that the variable had a mean P and a variance P*(1-P) and this variable would have a Bernoulli distribution.

When we have a proportion as a response, we use a **logistic** or **logit** transformation to link the dependent variable to the set of explanatory variables. The logit link has the form:

Logit(P) = Log[P/(1-P)]

The term within the square brackets is the odds of an event occurring. In the example above this would be the odds of a person being perceived to have behaviour problems.

Using the logit scale changes the scale of a proportion to plus and minus infinity, and also because Logit (P) = 0, when P=0.5. When we transform our results back from the logit (log odds) scale to the original probability scale, our predicted values will always be at least 0 and at most 1.

Logistic regression theory

Let:

$$P_i = \Pr(Y = 1 \mid X = x_i)$$

Then we can write the model:

$$Log\left(\frac{P_i}{1-P_i}\right) = \log it(P_i) = \beta_0 + \beta_1 x_i$$

In our example P_i is the probability of being perceived as having behaviour problems, and x_i is the boy's ethnic group. Therefore the parameter β_0 gives the *log* odds of a white boy being perceived to have behaviour problems (when $x_i = 0$) and β_1 shows how these odds differ for black boys (when $x_i = 1$).

We can write the model in terms of **odds** as:

$$P_{i/(1-P_i)} = \exp(\beta_0 + \beta_1 x_i)$$

Or in terms of the <u>probability</u> of the outcome (e.g. perceived behaviour problems) occurring as:

 $P_i = \exp(\beta_0 + \beta_1 x_i) / (1 + \exp(\beta_0 + \beta_1 x_i))$

Conversely the probability of the outcome not occurring is

 $1 - P_i = 1/(1 + \exp(\beta_0 + \beta_1 x_i))$

Notice that we have so far not included a residual term in the models, and have instead expressed the model in terms of population probabilities. But we could write it as:

$$p_i = P_i + f_i = \exp(\beta_0 + \beta_1 x_i) / (1 + \exp(\beta_0 + \beta_1 x_i)) + f_i$$

Note that in this case, f_i is not normally distributed, as it was assumed to be for linear regression.

Returning to Example 1: perceived behavioural problems by ethnic group

We will now consider some logistic regression theory and return to Example 1, session 1.

	Ethnic Group		
Behaviour	White	White Black I	
Problems			
NO	90 [0.83]	30 [0.48]	120 (70%)
YES	19 [0.17]	33 [0.52]	52 (30%)
Total	109 (63%)	63 (37%)	172 (100%)

We can fit a logistic regression model to the data in Table 1. We get:

Logit P = -1.56 + 1.65EG

Which we can interpret as the log odds of a white boy (EG=0) seen as having a behaviour problem being equal to -1.56, hence the odds of a white boy having a behaviour problem are: exp(-1.56) = 0.21

The log odds of a black boy (EG=1) having a perceived behaviour problem are -1.56 + 1.65 = 0.09. Hence the odds of a black boy having a perceived behaviour problem are exp(0.09) = 1.1 Alternatively we can say that the odds for black boys are exp(1.65)=5.21 times as high as they are for white boys. That is, the relative odds of a teacher perceiving a black boy to have behavioural problems compared with a black boy are 5.21.

Notice that these results correspond exactly to the results in Table 1. This is because for Table 1 there is one degree of freedom: we can calculate the degrees of freedom in the table as $(r-1)^*(c-1) = 1$, where r is the number of rows in the

table and c is the number of columns. So if we fit one parameter (ethnic group, EG) we have used up, or *saturated*, all the degrees of freedom and hence fitted a saturated model. This means we have fitted enough terms in the model to explain everything that is going on in Table 1. Before we fitted the ethnic group term, we could not have explained everything that is going on in the table, and we would hence find a **deviance** (or $-2 \log$ likelihood) of 22.8. The deviance is a measure of how much variation is left having fitted the model (how much is left unexplained by the model). The deviance follows a chi² distribution and we would in general compare the difference in deviance in two models to find out if the extra terms we added were significant. In the current example, we cannot really talk in terms of 'change in deviance' because once we have fitted EG to the model, we have fitted a saturated model, and the deviance is 0, but in general, assessing the change in deviance is a very useful way of assessing whether we need to add extra terms to our model. In the workshop examples we will see how this works in much more detail.

Dummy variables

When an explanatory variable is categorical we use dummy variables to contrast the different categories. For each variable we choose a baseline category and then contrast all remaining categories with the base line. If an explanatory variable has k categories, we need k-1 dummy variables to investigate all the differences in the categories with respect to the dependent variable.

For example suppose the explanatory variable was housing tenure coded like this:

<u>Tenure</u>

1: Owner occupier
 2: renting from a private landlord
 3: renting from the local authority

We would therefore need to choose a baseline category and create two dummy variables. For example if we chose owner occupier as the baseline category we would code the dummy variables like this

Tenure:	D1	D2
Owner occupier	0	0
Rented private	1	0
Rented local authority	0	1

For logistic regression SPSS can create dummy variables for us from categorical explanatory variables, as we will see later.

Exercise 2

Write down a statistical model to investigate the relationships in the following table

Unemployed				
	Afro Caribbean	Pakistani	Indian	TOTAL
No	50	40	45	135
Yes	9	5	4	18
Total	59	45	49	153

3) Logistic regression in SPSS 13

These data are taken from the British Election Study 2005 pre-campaign and post-election panel data. More information:

http://www.essex.ac.uk/bes/

We will consider the propensity to vote (sometimes called 'turnout') as the dependent variable, which has 2 categories. 0=did not turn out to vote, 1 turned out to vote.

We will consider turnout in relation to three explanatory variables: gender, age and housing tenure of the respondent. Turnout is known to be lower amongst young people in western democracies, and may also be associated with tenure and gender. We will use logistic regression to investigate the extent of the association between the propensity to turn out to vote, with respect to gender, age and tenure in the 2005 election data.

But first some exploratory data analysis: we will check the distributions of each of the variables and do some filtering of the data and re-coding of the variables.

NB: the dataset which we will use here is called turnout1.sav.

🖬 turnout1	.sav [DataSet1] - SPSS	Data Edit	or								
<u>File E</u> dit <u>Y</u>	<u>v</u> iew <u>D</u> ata <u>T</u> r	ansform	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Add	- <u>o</u> ns <u>W</u> in	dow	<u>H</u> elp			
궏 📕 🚔		1	Re <u>p</u> or	ts		•	😽 💊 🖣					
	Name	Ту	D <u>e</u> scr	iptive Statis	tics	►	123 Ereque	ncies		'alues	Miss	sing
1	serialno	Numerio	Ta <u>b</u> les	3		→	🌆 <u>D</u> escrij	otives			None	4
2	apoint	Numerio	Compa	are Means		→	🔩 <u>E</u> xplore	e			None	3
3	aiss_nu	Numerio	<u>G</u> ener	al Linear M	odel	→	💌 <u>C</u> rosst	abs			None	
4	aqver	Numerio	Gener	ali <u>z</u> ed Line	ar Models	→	1/2 <u>R</u> atio				None	
5	aeditq	Numerio	Mi <u>x</u> ed	Models		→	🙍 <u>P</u> -P Plo	ts		es}	None	
6	afirst	Numerio	<u>C</u> orrel	ate		→	📩 <u>Q</u> -Q Pl	ots		ress 1	None	
7	acountry	Numerio	<u>R</u> egre	ssion		►	puntry		{1, E	ngland}	None	
8	axyver	Numerio	L <u>og</u> lin	L <u>og</u> linear		→	ersion X/\	′ for	None		None	
9	axycomp	Numerio	Classi	Íy		►	'Ver com	pute	{1, Y	es}	None	
10	aintdate	String	<u>D</u> ata F	Data Reduction		►	/@/INTEI	R∨I	None)	None	
11	asintdat	String	Sc <u>a</u> le			►	omputer l	ntDate	None)	None	
12	asttim	String	<u>N</u> onpa	arametric Te	ests	►	art time		None)	None	
13	awestmin	String	Time S	Series		→	estmins		None)	None	
14	awestmn1	String	<u>S</u> urviv	/al		→	'estmin1		None)	None	
15	apsu_no	Numerio	🔀 Missin	送 Missing Value Anal <u>y</u> sis			su_No		None)	None	
16	ascntry	Numerio	M <u>u</u> ltipl	e Response	в	•	Country		{1, E	ngland}	None	•
	4		Compl	ex Samples	3	•						
Data View	Variable View		Quality	y Control		•						
Frequencies				Curve			SPS	S Proce	ssor is	: ready		

🔛 Fr	equencies	
b b b b b b b b b b b b b b b b b b b	q63ay q63by q63byot q10 q11 q12b q12both q12c q12d ▼	<u>Statistics</u> <u>C</u> harts <u>F</u> ormat
	isplay frequency tables OK <u>P</u> aste <u>R</u> eset Ca	ncel Help

frequency of turnout from unfiltered data shown below.

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Yes, voted	3079	64.3	74.0	74.0
	No	1079	22.5	25.9	99.9
	DK	3	.1	.1	100.0
	Total	4161	86.9	100.0	
Missing	System	630	13.1		
Total		4791	100.0		

Vote in General Election?

We will now filter the dataset so that it only contains those people who either answered yes or no to "did you vote in the general election 2005?".

💀 Select Cases 🛛 🔀
Select Cases Select Cases Select Cases Select Cases Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Select Sele
OK <u>P</u> aste <u>R</u> eset Cancel Help

Select Cases: If		×
Select Cases: f	Image: Point of the second state of	V V V V V
	Continue Cancel Help	

Frequency of turnout from filtered data:

Vote in General Election?

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Yes, voted	3079	74.1	74.1	74.1
	No	1079	25.9	25.9	100.0
	Total	4158	100.0	100.0	

We will now recode the bq12a variable into another variable called 'vote2005' which we will recode as 0=didn't turn out to vote, 1=did turn out to vote. This will enable us to model the probability of turning out to vote, which is the response we require.

🚰 *turnout1.sav [DataSet1] - SPSS Data Editor									
<u>File E</u> dit	<u>∨</u> iew <u>D</u> ata	Iransform Analyze Graphs Utilities Add-							
🗁 📙 🚔	📴 🄚 🖻	📑 Compute Variable							
	Name	✗? Count Values within Cases							
382	bq63by	x•x Recode into Same Variables ₽							
383	bq63byot								
384	bq10	Automatic Recode							
385	bq11	Visual Binning							
386	bq12a	/c							
387	bq12b								
388	bq12both	Rank Cases /(
389	bq12c	🗎 Date and Time Wizard							
390	bq12d	🗠 Create Ti <u>m</u> e Series 🥸							
391	bq12doth	Replace Missing Values							
392	bq12totz	🔊 Random Number <u>G</u> enerators							
393	bq12e	Run Pending Transforms CtrLG							
394	bq12eoth								

🛃 Recode into Different Variables: Old	and New Values
Old Value	New Value
	Value:
	◯ S <u>v</u> stem-missing
○ <u>S</u> ystem-missing	◯ Copy old value(s)
◯ System- or <u>u</u> ser-missing	Old> New:
O Range:	Add 1>1
through	2> 0 <u>Change</u>
Range, LOWEST through value:	
◯ Rang <u>e</u> , value through HIGHEST:	
	Output variables are strings
◯ All <u>o</u> ther values	Convert numeric strings to numbers ('5'->5)
Continue	Cancel Help

Elle Edit ⊻e	ew Data Ira Name AB9b q108 eender enure nge	ansform <u>A</u> nalyz Type Numeric Numeric Numeric Numeric Numeric Numeric	ze <u>G</u> raphs Width 8 8 8 8 8	Utilities A Decimals 2 2 2	dd-gns Window Help Combined-Partner-Typ Combined-Ethnicity gender of respondent	Values {1.00, Prive {1.00, White {1.00, male}	None None
 Image: Constraint of the second second	Er ← r≯ 7 Name q89b q108 gender enure ige	Type Type Numeric Numeric Numeric Numeric	 ▶ → ■ ▲ Width 8 8 8 8 8 	Decimals 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Label Combined-Partner-Typ Combined-Ethnicity gender of respondent	Values {1.00, Prive {1.00, White {1.00, male}	None None
805 ta 806 ta 807 g 808 te	Name q89b q108 jender enure ige	Type Numeric Numeric Numeric Numeric	Width 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Decimals 2 2 2	Label Combined-Partner-Typ Combined-Ethnicity gender of respondent	Values {1.00, Prive {1.00, White {1.00, male}	None None None
805 to 806 to 807 gr 808 te	q89b q108 jender enure ige	Numeric Numeric Numeric Numeric	8 8 8 8	2 2 2	Combined-Partner-Typ Combined-Ethnicity gender of respondent	{1.00, Prive {1.00, White {1.00, male}	None None
806 to 807 gr 808 te	q108 jender enure ige	Numeric Numeric Numeric	8 8 8	2	Combined-Ethnicity gender of respondent	{1.00, White {1.00, male}	None
807 gv 808 te	jender enure ige	Numeric Numeric Numeric	8 8	2	gender of respondent	{1.00, male}	Non
808 te	enure Ige	Numeric Numeric	8	2			NOUG
	ige	Numeric		2	tenure of respondent	{1.00, owns}	None
809 aj		Numeric	8	2	age in years	None	None
810 fil	lter_\$	Numeric	1	0	bq12a<=2 (FILTER)	{0, Not Sele	None
811 va	ote2005	Numeric	8	2		None	None
812							
813							
814							
815							
816							
817							
818							
819							
820							
Data Viaux V	•		333				
	anable view				CDCC, Processory is reached	Eithen Or	

Value Labels	X
Value Labels Value: 1 Label: voted	Spelling
Remove OK Cancel Help	

Frequencies

📴 Frequencies							
bq12a bq12b bq12b bq12c bq12d bq12d bq12d bq12d bq12dth ibq12dth ibq12totz bq12e bq12e bq12e		<u>V</u> ariable(s):	Statistics Charts Eormat				
Display frequency tables OK Paste Reset Cancel Help							

vo	te	2	n	n	5
	ιc	~	υ	υ	J

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	didn't vote	1078	25.9	26.0	26.0
	voted	3075	74.0	74.0	100.0
	Total	4153	99.9	100.0	
Missing	System	3	.1		
Total		4156	100.0		

gender of respondent

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	male	1839	44.2	44.2	44.2
	female	2317	55.8	55.8	100.0
	Total	4156	100.0	100.0	

tenure of respondent

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	owns	2987	71.9	71.9	71.9
	rents	1119	26.9	26.9	98.8
	neither	50	1.2	1.2	100.0
	Total	4156	100.0	100.0	

Histogram of age

Question why are some bars much lower than their neighbours?

Cross tabulations

🔛 *turnout	1.sav [DataSet	2] - SPSS	i Data Edi	itor									
<u>F</u> ile <u>E</u> dit	<u>∨</u> iew <u>D</u> ata <u>T</u> r	ansform	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Add	- <u>o</u> ns	Window	Help				
🗁 📙 🚑	📴 🔶 👼	🄚 📑 🛛	Repor	ts			V	è 🗣 🚺					
	Name	Ту	D <u>e</u> scr	iptive Statis	stics	→	123 E	requencies		'alues	Miss	ing	
801	tq86b	Numerio	Ta <u>b</u> les	3		•	Но с	escriptives			None	1	•
802	tq88a	Numerio	Comp	Compare Means		•	А, е	A Explore		, Profe	None		
803	tq88b	Numerio	Gener	al Linear M	odel	•		- · Crosstabs		, Profe	None		
804	tq89a	Numerio	Gener	alized Line	ar Models	•	1/2 F	- Ratio		, Prive	None		
805	tq89b	Numerio	Mixed	- Models		•		- P-P Plots		, Prive	None		
806	tq108	Numerio	Correl	Correlate		•		- Q-Q Plots		, White	None		
807	filter_\$	Numerio	Regression			• I	ji za	<= 2 (FI	{U, N	ot Sele	None		
808	gender	Numerio	Loglinear		•	nde	r of respo	{1.00	, male}	None			
809	tenure	Numerio	Classi	fv		•	nure	of respo	{1.00	, owns}	None		
810	age	Numerio	Data F	eduction		•	le in	years	None		None		
811	vote2005	Numerio	Scale			•			{0.00	, didn't	None		
812			 Nonpa	arametric Te	ests	•							
813			Time S	Series		•							
814			Surviv	/al		•							
815			E Missin	in Value Ar	nalvsis							2	
816			Multip	e Respons	e 	•						,	-
	•		Compl	ev Semnler									
Data View	Variable View	View Comple		v Control	2	,							
Crosstabs				y control Turva				SPSS Proce	ssor is	ready			
		1 2											

🔛 Crosstabs	X	
I tq83a I tq83a I tq83b I tq84 I tq85 I tq86a I tq88a I tq88a I tq89b I tq89a I tq89b I tq80b I tq80b <	Exact Statistics Cells Eormat	
Suppress tables		
OK <u>P</u> aste <u>R</u> eset Cancel Help		

🛃 Crosstabs: Cell	Display	$\mathbf{\times}$
Counts]	
✓ Observed		
Expected		
Percentages	Residuals	
✓ <u>R</u> ow	Unstandardized	
Column	Standardized	
<u>T</u> otal	Adjusted standardized	
_C Noninteger Weigl	nts	_
Round cell count	ts 📀 Round case <u>w</u> eights	
🔿 Truncate cell co	unts 🔘 Truncate case wei <u>gh</u> t	s
◯ No adjust <u>m</u> ents		
Continue	Cancel Help	

gender of respondent * vote2005 Crosstabulation

			vote2005		
			didn't vote	voted	Total
gender of respondent	male	Count	491	1346	1837
		% within gender of respondent	26.7%	73.3%	100.0%
		% within vote2005	45.5%	43.8%	44.2%
	female	Count	587	1729	2316
		% within gender of respondent	25.3%	74.7%	100.0%
		% within vote2005	54.5%	56.2%	55.8%
Total		Count	1078	3075	4153
		% within gender of respondent	26.0%	74.0%	100.0%
		% within vote2005	100.0%	100.0%	100.0%

From these results we can see that:

The conditional probability of male turning out to vote are 1346/1837 = 0.733

(which we note that when multiplied by 100 is equal to the row % in this table, given the way the cross tab is organised).

The conditional probability of female turning out to vote are 1729/2316 = 0.747

The odds of a male turning out to vote are:

1346/491 = 2.741

The odds of female turning out to vote are

1729/587 = 2.945

relative odds (female: male) are

(1729/587) / (1346/491) = 1.074

We will now cross tabulate vote2005 and housing tenure.

Crosstabs		×
tq83a tq83a tq83b tq84 tq85 tq86a tq86b tq86b tq88a tq89a tq89b tq89b tq108 fitter_\$ gender ge	Row(s): Column(s): Vote2005 Layer 1 of 1 Previous Next	E <u>x</u> act Statistics C <u>e</u> lls Eormat
Display clustered <u>b</u> ar charts		
Suppress <u>t</u> ables		
ОК	aste <u>R</u> eset Cancel Helk	,

			vote2005		
			didn't vote	voted	Total
tenure of	owns	Count	583	2404	2987
respondent		% within tenure of respondent	19.5%	80.5%	100.0%
		% within vote2005	54.1%	78.2%	71.9%
	rents	Count	481	636	1117
		% within tenure of respondent	43.1%	56.9%	100.0%
		% within vote2005	44.6%	20.7%	26.9%
	neither	Count	14	35	49
		% within tenure of respondent	28.6%	71.4%	100.0%
		% within vote2005	1.3%	1.1%	1.2%
Total		Count	1078	3075	4153
		% within tenure of respondent	26.0%	74.0%	100.0%
		% within vote2005	100.0%	100.0%	100.0%

tenure of respondent * vote2005 Crosstabulation

From this table we can see that, according to these data, owner occupier ('owns') are much more likely to turnout to vote than renter ('rents'). The conditional probability of owner occupier turning out to vote is 0.805 whereas for renters it is 0.569.

(If time permits, please work out the odds and relative odds for owns and rents).

There are a total of 49 people who describe their housing tenure as neither 'owns' or 'rents'.

A scatterplot of the relationship between age and the proportion at each age turning out to vote shows that there is a much higher chance of turning out to vote when you are older.

The relationship between age and propensity to turn out to vote (using the variable vote2005mean).

Line of best fit: linear

Line of best fit: quadratic

Logistic regression models

We can access the logistic regression procedure in SPSS as follows:

	turnout	1.sav	[DataS	et2] - SPSS	Data	Editor									
Eile	Edit	⊻iew	<u>D</u> ata	Transform	Analy	ze <u>G</u> ra	aphs	Utilities	Add	- <u>o</u> ns	Window	Help			
⊜	📙 🔒	ШŤ	♦	- 🔚 📑	Re	eports			•	\$	è 🐿				
			Name	Ту	Dg	escriptive	Statis	tics	•		Label	Values	Missing	Columns	
	801	tq8b	b	Numerio	Та	bles			•	pmb	ined-Num	None	None	8	=
	802	tq88	а	Numeric	Ca	ompare M	leans		•	pmb	ined-R's	{1.00, Profe	None	8	≣
	803	tq88	b	Numeric	G	eneral Lin	iear Mi	odel	•	pmb	ined-Part	{1.00, Profe	None	8	冒
	804	tq89	а	Numeric	G	eneralize	d Linea	ar Models	•	omb	ined-R-Ty	{1.00, Prive	None	8	ভ
	805	tq89	b	Numerio	Mi	xed Mode	els		•	pmb	ined-Part	{1.00, Prive	None	8	=
	806	tq10	8	Numerio	C	orrelate			•	pmb	ined-Ethn	{1.00, White	None	8	=
	807	filter	\$	Numerio	Br	aression			•	R I	inear		None	10	=
	808	geno	ler	Numeric	L	ndinear			•		Curve Estimati	on	None	10	∃
	809	tenu	re	Numeric		assify			•	R	Partial Least S	quares	None	10	3
	810	age		Numerio	Dr	ata Reduc	tion		•	PLS .	ana zougro		None	10	1
-	811	vote	2005	Numeric	5	ale				106	Binary Logistic	·	None	10	=
	812	1			N	nnorome	tric Te	ete	,	ницт	Multinomial Log	gistic			
		1			194 Ta	no Sorios	ane re	010	Ę.	ORD (Or <u>d</u> inal				
	814	1				no ocnos	>		,	PROB	Probit				
	815	1			<u></u>	arvivai 			,	R	Vonlinear				
		ĩ – –				ssing vai		ai <u>v</u> sis		R)	//eight Estimat	tion			
-	817	1			INI INI	aupie Res	sponse	*	ľ	R	 2-Stage Least	Squares			
	818	1				ompiex Sa	ampies 		Ţ.			· · · · · · · · · · · · · · · · · · ·			
1	819	1				uaiity Con	itr'0i		,	2	2ptimal Scalini	3			
1	820				U R	JC Cur <u>v</u> e									
-	821														
-	822														

vote2005 is our dependent variable. We begin by adding gender – a categorical variable (which is coded on the dataset as 1=male, 2=female). We must ensure that the fact that gender is a categorical variable is declared in our analysis and we must choose the reference category. We will choose the first category, male, as the reference category as is shown below.

Logistic Reg	gression	
tq83a tq83a tq83b tq84 tq85 vq86a vq86a tq86b tq88a tq88a tq89a tq89b tq89b tq108 vq108 vqender vqender	Dependent: Vote2005 Block 1 of 1 Previous Qovariates: gender Vertical Selection Variable: Selection Variable: Rule	Categorical Save Options
	OK <u>P</u> aste <u>R</u> eset Cancel Help]

📴 Logistic Regression: Define Categorical Variables					
<u>C</u> ovariates: ∲ gender (Categorical Covariates:				
	Contrast: Indicator ▼ Change Contrast: Indicator ▼ Change Reference Category: ● Last ○ First]			
Co	ntinue Cancel Help				

Logistic Regression: Define	Categorical Variables 🛛 🔀				
<u>C</u> ovariates:	Categorical Covariates:				
	gender(Indicator(first))				
	Change Contrast				
	Contrast: Indicator Change				
	Reference Category: O Last O First				
Continue Cancel Help					

Now Click on Continue and then OK to run the model!

Unweighted Cases ^a		Ν	Percent
Selected Cases	Included in Analysis	4153	99.9
	Missing Cases	3	.1
	Total	4156	100.0
Unselected Cases		0	.0
Total		4156	100.0

Case Processing Summary

a. If weight is in effect, see classification table for the total number of cases.

We can see from the table above that we are modeling 4156 cases here (some cases are deleted from the analysis where information is missing. The SPSS default for this is listwise. Only cases where all dependent and explanatory variables are complete are included in the analysis.). The tables below show us firstly that we have coded our dependent variable in the right direction and secondly that the categorical variable for gender has reference category of male. The (1) means that gender (1) in the results refers to female here.

Dependent Variable Encoding

Original Value	Internal Value
didn't vote	0
voted	1

Categorical Variables Codings

			Paramete
		Frequency	r coping
gender of respondent	male	1837	.000
	female	2316	1.000

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted			
				2005		
			Votez	2005	Percentage	
	Observed		didn't vote	voted	Correct	
Step 0	vote2005	didn't vote	0	1078	.0	
		voted	0	3075	100.0	
	Overall Percentage				74.0	

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	1.048	.035	876.977	1	.000	2.853

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	gender(1)	1.019	1	.313
	Overall Statistics		1.019	1	.313

Block 1: Method = Enter

Adding one variable to the

		Chi-square	df	Sig.
Step 1	Step	1.018	1	.313
	Block	1.018	1	.313
	Model	1.018	1	.313

Omnibus Tests of Model Coefficients

We have added one new variable to the model, which has reduced the -2 log likelihood by 1.018 with 1 degree of freedom. The -2 log likelihood is a measure of how well the model explains variations in the outcome of interest, in this example turnout. The -2 log likelihood (sometimes called, deviance) has a chi squared distribution. The p value for the result of adding gender to the model is given in the table above and we can see that this is 0.313 which is greater than the conventional significance level of 0.05. hence we would conclude that the addition of gender to the model is not statistically significant. In other words this variable does not explain variations in turnout.

Model Summary

Step	-2 Log	Cox & Snell	Nagelkerke
	likelihood	R Square	R Square
1	4755.065 ^a	.000	.000

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification	Table
----------------	-------

			Predicted			
			vote	2005	Percentage	
	Observed		didn't vote	voted	Correct	
Step 1	vote2005	didn't vote	0	1078	.0	
		voted	0	3075	100.0	
	Overall Percentage				74.0	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step	gender(1)	.072	.071	1.019	1	.313	1.074
1	Constant	1.008	.053	365.868	1	.000	2.741

a. Variable(s) entered on step 1: gender.

We see from the table above that the estimated model is

Logit(vote2005) = 1.008 + 0.072 gender(1)

As we have recoded gender to 0=male, 1=female, this is equivalent to:

Logit(vote2005) = 1.008 +0.072 female

We can see that the coefficient of gender is non-significant (sig = 0.313 > 0.05).

The Exp(B) column shows the relative odds (odds ratio) and indicates that females are 1.074 times as likely to turnout to vote than males. We can request a confidence interval for this result as shown below.

🛃 Logistic Regression: Options	
Statistics and Plots	
Classification plots	Correlations of estimates
Hosmer-Lemeshow goodness-of-fit	teration history
Case <u>w</u> ise listing of residuals	✓ CI for exp(B): 95 %
Outliers outside 2 std. dev.	
◯ <u>A</u> ll cases	
-Display	
O At <u>e</u> ach step ○ At <u>l</u> ast step	
Probability for Stepwise	Classification cutoff: 0.5
E <u>n</u> try: 0.05 Remo <u>v</u> al: 0.10	Meximum Heretione:
	<u>Maximum iterations</u> . 20
✓ Include constant in model	
Continue Cancel	Help

Variables in the Equation

								95.0% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	gender(1)	.072	.071	1.019	1	.313	1.074	.935	1.235
1	Constant	1.008	.053	365.868	1	.000	2.741		

a. Variable(s) entered on step 1: gender.

The confidence interval for $\exp(B)$ is 0.935 to 1.235 indicates that females are between 0.935 and 1.235 times as likely to turn out to vote than females. i.e. the range has a lower limit of 'slightly less than males' and upper limit of 'slightly more than males' and therefore includes 'males and females are equally likely to turn out to vote (i.e. $\exp(B)=1$). This is not surprising since we have already concluded that gender has no statistically significant explanatory power in explaining variations in turnout. We will now add an additional variable to the model – age in years (which is a continuous variable, rather than a categorical one).

We will make use of the 'block' procedure to add age to the model, so that we can see both the effect of adding age alone on the -2 log likelihood as well as seeing how a model which includes both age and gender might explain variations in turnout.

📴 Logistic Re	gression	×
tq83a tq83a tq83b tq84 tq85 tq86a tq86a tq88a tq88a tq89a tq89b tq89b tq89b tq108 filter_\$ gender filter_\$ gender filter_\$	Dependent: Image: Selection Variable: Image: Selection Variable:	Categorical Save Options
	OK <u>Paste</u> <u>R</u> eset Cancel Help	

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	300.666	1	.000
	Block	300.666	1	.000
	Model	301.684	2	.000

The addition of age to the model has, as a single variable, reduced the -2 log likelihood by 300.666 on 1 degree of freedom. The model, which now contains 2 parameters, gender and age has collectively reduced -2 log likelihood by 301.684 but we can see it is age that has the explanatory power, and gender is not adding anything extra.

Model Summary

Step	-2 Log	Cox & Snell	Nagelkerke
	likelihood	R Square	R Square
1	4454.399 ^a	.070	.103

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

the model which includes gender and age explains between 7 and 10% of the variation in turnout.

			Predicted		
			vote	2005	Porcontago
	Observed		didn't vote	voted	Correct
Step 1	vote2005	didn't vote	36	1042	3.3
		voted	42	3033	98.6
	Overall Percentage				73.9

Classification Table^a

a. The cut value is .500

Variables in the Equation

								95.0% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	gender(1)	.077	.074	1.087	1	.297	1.080	.935	1.248
1	age	.037	.002	267.015	1	.000	1.038	1.033	1.042
	Constant	779	.118	43.942	1	.000	.459		

a. Variable(s) entered on step 1: age.

the model is now:

logit(vote2005) = -.779 + .077gender(1)+.037age

The age coefficient is statistically significant. Exp(B) for age is 1.038, which means for each year different in age, the person is 1.038 times more likely to turn out to vote, having allowed for gender in the model. Eg. a 21 year old is 1.038 times as likely to turn out to vote than a 20 year old. This might not seem much of a difference but a 20 year difference leads to a person being $1.038^{20} = 2.11$ times more likely to turn out to vote. E.g. a 40 year old is 2.11 times more likely to turn out to vote than a 20 year old is 2.11 times more likely to turn out to vote.

We can add housing tenure to the model, as 'block 3' tenure is a categorical variable, as was gender. By declaring it as categorical we can set up dummy (indicator) variables and make the first category 'owns' the reference category:

🔛 Logistic Regr	ression	X
tq83a tq83a tq83b tq84 tq85 tq86a tq86a tq88a tq88b tq89a tq89a tq89b tq108 filter_\$ gender tenure filter_\$	Dependent:	Categorical Save Options
	OK <u>Paste</u> <u>R</u> eset Cancel Help	

Click on Continue and then OK to run the model again.

Case Processing Summary

Unweighted Cases ^a		N	Percent
Selected Cases	Included in Analysis	4153	99.9
	Missing Cases	3	.1
	Total	4156	100.0
Unselected Cases		0	.0
Total		4156	100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value	Internal Value
didn't vote	0
voted	1

Categorical Variables Codings

		Par		rameter coding	
		Frequency	(1)	(2)	
tenure of respondent	owns	2987	.000	.000	
	rents	1117	1.000	.000	
	neither	49	.000	1.000	
gender of respondent	male	1837	.000		
	female	2316	1.000		

Block 0: Beginning Block

Classification Table^{a,b}

			Predicted		
			vote	2005	Percentage
	Observed		didn't vote	voted	Correct
Step 0	vote2005	didn't vote	0	1078	.0
		voted	0	3075	100.0
	Overall Percentage				74.0

a. Constant is included in the model.

b. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	1.048	.035	876.977	1	.000	2.853

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	gender(1)	1.019	1	.313
	Overall Statistics		1.019	1	.313

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1.018	1	.313
	Block	1.018	1	.313
	Model	1.018	1	.313

Model Summary

Step	-2 Log	Cox & Snell	Nagelkerke
	likelihood	R Square	R Square
1	4755.065 ^a	.000	.000

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
			vote2	2005	Percentage	
	Observed		didn't vote	voted	Correct	
Step 1	vote2005	didn't vote	0	1078	.0	
		voted	0	3075	100.0	
	Overall Percentage				74.0	

a. The cut value is .500

Variables in the Equation

								95.0% C.I.for EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	gender(1)	.072	.071	1.019	1	.313	1.074	.935	1.235
1	Constant	1.008	.053	365.868	1	.000	2.741		

a. Variable(s) entered on step 1: gender.

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	300.666	1	.000
	Block	300.666	1	.000
	Model	301.684	2	.000

Model Summary

Step	-2 Log	Cox & Snell	Nagelkerke
	likelihood	R Square	R Square
1	4454.399 ^a	.070	.103

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

			Predicted			
				2005		
			vote	2005	Percentage	
	Observed		didn't vote	voted	Correct	
Step 1	vote2005	didn't vote	36	1042	3.3	
		voted	42	3033	98.6	
	Overall Percentage				73.9	

a. The cut value is .500

Variables in the Equation

								95.0% C.I.for EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	gender(1)	.077	.074	1.087	1	.297	1.080	.935	1.248
1	age	.037	.002	267.015	1	.000	1.038	1.033	1.042
	Constant	779	.118	43.942	1	.000	.459		

a. Variable(s) entered on step 1: age.

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	174.499	2	.000
	Block	174.499	2	.000
	Model	476.183	4	.000

We can immediately see that tenure reduces the -2 log likelihood by 174.499 having added 2 new variables (tenure has 3 categories in all so we need 2 dummy variables). Tenure is statistically significant in this model.

Model Summary

Ston	-2 Log	Cox & Snell	Nagelkerke
Step	likelinoou	R Square	R Square
1	4279.900 ^a	.108	.159

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Classification Table^a

				Predicted	
			vote	2005	Percentage
	Observed		didn't vote	voted	Correct
Step 1	vote2005	didn't vote	273	805	25.3
		voted	180	2895	94.1
	Overall Percentage				76.3

a. The cut value is .500

								95.0% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	gender(1)	.101	.076	1.769	1	.183	1.106	.953	1.283
1ຶ	age	.034	.002	227.894	1	.000	1.035	1.030	1.039
	tenure			176.580	2	.000			
	tenure(1)	-1.053	.079	176.555	1	.000	.349	.299	.407
	tenure(2)	324	.335	.934	1	.334	.723	.375	1.396
	Constant	326	.123	7.008	1	.008	.721		

Variables in the Equation

a. Variable(s) entered on step 1: tenure.

The table above shows us that the estimated model is now:

logit (vote2005) = -.326 + .101gender(1) + .034age - 1.053tenure(1) - . 324tenure(2)

in other words

logit (vote2005) = -.326 + .101female + .034age - 1.053rents - .324neither

tenure(1) which contrasts 'rents' with 'owns' has an $\exp(B)$ of 0.349 which means that a person who rents is only .349 times (i.e. much less) likely to turn out than a person who owns their own property, having allowed for gender and age. If we calculate the inverse of $\exp(B)$ here, i.e. 1/0.349 = 2.87, we can say that a person who owns their own home is 2.87 times more likely to vote than someone who rents, having allowed for gender and age.

4) Summary and further comments

Summary

We have seen how logistic regression analysis may be used to analyse tabular data where one of the dimensions of the table is an outcome of interest. This morning, we looked at some examples where we calculated the probabilities, odds and relative odds from the table, and we have seen how we can also calculate these (and get the same results) from the model parameter estimates. Some theory was introduced and we saw how the logistic model framework is a good way to investigate associations in multi-way tables where one of the dimensions of the tables is an outcome of interest, with two categories.

We have seen how we can use SPSS to fit logistic regression models to data using an example based on the 2005 UK election. We covered main effects models and models with interactions and we went through the output that SPSS gives us, including the classification table, the deviance, the model coefficients and other useful measures such as exp(B), which gives the relative odds or odds ratio for a particular explanatory variable, given the other explanatory variables in the model.

Further comments

The term 'generalised linear model' is used to describe a procedure for transforming the dependent variable so that the 'right hand side' of the model equation can be interpreted as a 'linear combination' of the explanatory variables:

$$f(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

In situations where the dependent (y) variable is continuous and can be reasonably assumed to have a normal distribution we do not transform the y variable at all and we can simply run a multiple linear regression analysis.

In situations where the dependent variable is dichotomous or 0/1 as we have seen today the most common procedure is to use logistic regression, using the logit link as we have done today. Other similar types of modelling include probit modelling. (See Dobson, McCullagh and Nelder for further details – details of these references in the reading list).

When the response variable has several categories we can use a model that allows for several categories in the response variable such as multinomial regression. If this response variable is ordinal (as opposed to nominal) we can allow for this in the modelling (see Agresti – reference details in reading list). An alternative is to recode the response variable into just two categories and do a logistic regression analysis (or to fit several logistic regression models to different pairs of categories in the response variable, although this is not as statistically efficient as doing a true multinomial analysis.

Note also that logistic regression models can also be fitted with multilevel components in MLwiN and STATA.

Reading list

- Field, A. (2005) *Discovering statistics using SPSS for Windows: advanced techniques for the beginner*, London: Sage. Chapter 6.
- Plewis, I (1997) *Statistics in Education*, Edward Arnold. (Especially chapter 5)
- **Dobson, A** (2001) *An introduction to generalized linear models (second edition).* Chapman and Hall.
- **McCullagh P and Nelder J.A**, (1989) *Generalized linear models (second edition)*. Chapman and Hall

Agresti, A. (1996) Introduction to categorical data analysis. John Wiley.