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Small Area Estimation Via M-quantile Geographically Weighted 

Regression

Nicola Salvati(1), Nikos Tzavidis(2), Monica Pratesi(1) and Ray Chambers(3)

ABSTRACT

One popular approach to small area estimation when data are spatially correlated is 

to employ Simultaneous Autoregressive Regression (SAR) random effects models to 

define an extension to the Empirical Best Linear Unbiased Predictor namely, the 

Spatial Empirical Best Linear Unbiased Predictor (SEBLUP) (Singh et al., 2005 and 

Pratesi and Salvati, 2007). SAR models allow for spatial correlation in the error 

structure. An alternative approach for incorporating the spatial information in the 

regression model is via Geographically Weighted Regression (GWR) (Brunsdon et 

al., 1996; Fotheringham et al., 1997). GWR extends the traditional regression model 

by allowing local rather than global parameters to be estimated. In this paper we 

investigate the use of GWR in small area estimation based on the M-quantile 

modelling approach (Chambers and Tzavidis, 2006). In doing so we first propose an 

M-quantile GWR model that is a local model for the M-quantiles of the conditional 

distribution of the outcome variable given the covariates. This model is then used to 

define a predictor of the small area characteristic of interest that accounts for spatial 

association in the data. An important spin-off from this approach is more efficient 
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synthetic estimation for out of sample areas. We demonstrate the usefulness of this 

framework through both model-based as well as design-based simulation, with the 

latter based on a realistic survey data set. The paper concludes with an application to 

environmental data for predicting average levels of the Acid Neutralizing Capacity at 

8-digit Hydrologic Unit Code level in the Northeast states of the U.S.A.

Keywords: Borrowing strength over space; Environmental data; Estimation for out of 

sample areas; Robust regression; Spatial dependency. 

1. INTRODUCTION

Unit level random effects models are widely used in small area estimation. See Rao 

(2003) Typically, such models assume independence of random area effects and 

individual effects. This assumption of unit level independence is also implicit when 

M-quantile models (Chambers and Tzavidis, 2006) are used in small area estimation. 

In economic, environmental and epidemiological applications, however, observations 

that are spatially close may be more related than observations that are further apart. 

This spatial correlation can be modelled by extending random effects models to allow 

for spatially correlated area effects, e.g. via a Simultaneous Autoregressive 

Regression (SAR) random effects model (Anselin, 1992; Cressie, 1993), and Singh et 

al. (2005) and Pratesi and Salvati (2007) have investigated the use of the Spatial 

Empirical Best Linear Unbiased Predictor (SEBLUP) for small area estimation in this 

situation.

SAR models allow for spatial correlation in the error structure. An alternative 

approach to incorporating the spatial information in the regression model is by 

assuming that the regression coefficients vary spatially across the geography of 

interest. Geographically Weighted Regression (GWR) (Brunsdon et al., 1996; 
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Fotheringham et al., 1997; 2002; Yu and Wu, 2004) extends the traditional regression 

model by allowing local rather than global parameters to be estimated. That is, GWR 

directly models spatially non-stationarity in the mean structure of the outcome 

variable. In this paper we explore the use of GWR in small area estimation based on 

the M-quantile modelling approach. In doing so we first propose an M-quantile GWR 

model, i.e. a local model for the M-quantiles of the conditional distribution of the 

outcome variable given the covariates. This model is then used to define a predictor of 

the small area characteristic of interest (here we focus on the small area mean) that 

accounts for spatial association in the data. An important spin-off from this approach 

is more efficient synthetic estimators for out of sample areas.

The structure of the paper is as follows: In section 2 we briefly review unit level 

mixed models with random area effects and M-quantile models for small area 

estimation. In section 3 we describe GWR and extend this to define the M-quantile 

GWR model. In section 4 we show how the M-quantile GWR model can be utilised 

for small area estimation. In section 5 we discuss mean squared error estimation for 

small area predictors defined under the M-quantile GWR model. In section 6 we 

present a series of model-based and design-based simulation studies for assessing the 

performance of the different small area predictors considered in this paper. In section 

7 we use data from the U.S. Environmental Protection Agency's Environmental 

Monitoring and Assessment Program (EMAP) to predict average levels of the Acid 

Neutralizing Capacity at 8-digit Hydrologic Unit Code (HUC) level in the Northeast 

states of the U.S.A. Finally, in section 8 we summarize our main findings.
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2. AN OVERVIEW OF UNIT LEVEL MODELS FOR SMALL AREA 

ESTIMATION

In what follows we assume that the target population can be divided into d small 

areas, each containing a known number jN  of units, with the value ijx  of a vector x

of p  auxiliary variables known for each unit i  in small area j  and with the value ijy

for the variable of interest y  known for each unit in the sample. The overall sample 

size is n, with the sample size in area j equal to jn  (this can be zero). The aim is to use 

these data to predict various area specific quantities, including (but not only) the area j

mean jm  of y .

The most popular method used for this purpose employs linear mixed models. In the 

general case such a model has the form

T T
ij ij ij j ijy x z! " #! " " , i = 1, …, jn , j = 1, …, d, (1)

where ij#  is an individual random effect, j"  is a vector of area level random effects 

and ijz  is a vector of auxiliary ‘contextual’ variables whose values are known for all 

units in the population. The role of the j"  in (1) is to characterise differences in the 

conditional distribution of y given x between the small areas. The empirical best linear 

unbiased predictor (EBLUP) of jm  (Henderson, 1975; Rao, 2003) is then

# $1 ˆ ˆˆ
j j

MX T T
j j i i i j

i s i r
m N y x z! "%

& &

' (
! " ") *) *

+ ,
- - (2)

where js  denotes the jn  sampled units in area j , jr  denotes  the remaining j jN n%

units in the area and !̂ , ˆ j"  are defined by substituting an optimal estimate of the 

covariance matrix of the random effects in (1) into the best linear unbiased estimator 

of !  and the best linear unbiased predictor (BLUP) of j"  respectively.
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An alternative approach to small area estimation is based on the use of M-quantile 

models (Breckling and Chambers, 1988). A linear M-quantile regression model is one 

where the qth M-quantile ( ; )qQ x $  of the conditional distribution of y given x satisfies

( ; ) ( )T
q ij ijQ x x q$$ !! . (3)

Here $  denotes the influence function associated with the M-quantile. For specified q

and continuous $ , an estimate ˆ ( )q$!  of ( )q$!  is obtained via an iterative weighted 

least squares algorithm.

The M-quantile coefficient iq  of population unit i was introduced by Chambers and 

Tzavidis (2006) and is the value iq  such that ( ; )
iq i iQ x y$ ! . These authors observed 

that if variability between small areas is a significant part of the overall variability of 

the population data, then we expect units from a particular small area to have similar 

M-quantile coefficients. When (3) holds, with ( )q$!  a sufficiently smooth function 

of q , they suggested a predictor of jm  of the form

# $1 ˆ ˆˆ ( )
j j

MQ T
j j i i j

i s i r
m N y x $! %%

& &

. /
! "0 1

0 12 3
- - (4)

where ˆ
j%  is an estimate of the average value of the M-quantile coefficients of the 

units in area j . Typically this is the average of estimates of these coefficients for 

sample units in the area, where these unit level coefficients are estimated by solving 

ˆ ( ; )
iq i iQ x y$ !  for iq . Here ˆ

qQ  denotes the estimated value of (3) at q. When there is 

no sample in the area ˆ 0.5j% ! .

Tzavidis and Chambers (2007) refer to (4) as the ‘naive’ M-quantile predictor and 

note that this can be biased. To rectify this problem these authors propose a bias 

adjusted M-quantile predictor of jm  of the form
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4 5/ 1 ˆ ˆˆˆ ˆ( ) ( )
j j j

j jMQ CD T
j j j i i j i i

i s i r i sj

N n
m tdF t N y x y y

n$! %
6

%

& & &%6

. /%
! ! " " %0 1

0 12 3
- - -7 , (5)

where ˆ ˆˆ ( )T
i i jy x $! %! . Note that the superscript CD in (5) refers to the fact that it is 

derived from the expected value functional of the area j version of the distribution 

function estimator proposed by Chambers and Dunstan (1986). Tzavidis and 

Chambers (2007) note that, under simple random sampling, predictor (5) is also 

derived from the expected value functional of the area j version of the Rao-Kovar-

Mantel (1990) distribution function estimator, which is a design-consistent and 

model-consistent estimator of the finite population distribution function.

3. M-QUANTILE GEOGRAPHICALLY WEIGHTED REGRESSION

In this section we define a spatial extension to M-quantile regression based on 

GWR. Since M-quantile models do not depend on how areas are specified, we also 

drop the subscript j  from our notation.

Given n observations at a set of L locations # $; 1,..., ;lu l L L n! 8 , with ln  data 

values # $, ; 1,...,il il ly x i n!  observed at location lu , a GWR model is defined as 

follows

( )il il l ily x u! #! " . (6)

The value of the regression ‘function’ ( )u!  at an arbitrary location u is estimated 

using weighted least squares

1

1 1 1 1

ˆ( ) ( , ) ( , )
l ln nL L

T
l il il l il il

l i l i
u w u u x x w u u x y!

%

! ! ! !

9 : 9 :
! ; < ; <
= > = >
- - - - ,

where ( , )lw u u is a spatial weighting function whose value depends on the distance 

from sample location lu  to u in the sense that sample observations with locations 
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close to u have more weight than those further away. One popular approach to 

defining such a weighting function puts

22
, ,exp 1 ( / )     

( , )   
0                             

l lu u u u
l

d b if d bw u u
otherwise

9 . /% 8? 2 3! ;
?=

, (7)

where ,lu ud  denotes the Euclidean distance between lu  and u and b is the bandwidth, 

which can be optimally defined using a least squares criterion (Fotheringham et al., 

2002). In what follows we will use (7) to define the weighting function. However, it 

should be noted that alternative weighting functions, for example the bi-square 

function, can also be used. 

The GWR model (6) is a model for the conditional expectation of y given x at 

location u. This is easily generalised to a model for the M-quantile of order q of the 

conditional distribution of y given x at u by allowing (3) to depend on u. That is, we 

write

( ; , ) ( ; )T
qQ x u x u q$$ !! (8)

where now ( ; )u q$!  varies with u as well as with q. That is, (8) allows the entire 

conditional distribution (not just the mean) of y given x to vary from location to 

location. The parameter ( ; )u q$!  in (8) can be estimated by solving

# $
1 1

( , ) ( ; ) 0
lnL

T
l q il il il

l i
w u u y x u q x$$ !

! !

% !- - . (9)

where # $1( ) 2 ( ) ( 0) (1 ) ( 0)q t s t qI t q I t$ $ %! @ " % 8 . Here s is a suitable robust estimate 

of the scale of the sample y values, e.g. the MAD estimate 

ˆ ( ; ) / 0.6745T
il ils median y x u q$!! %  and we will typically assume a Huber Proposal 

2 influence function, ( ) ( ) sgn( ) ( )t tI c t c c t I t c$ ! % 8 8 " @ . Provided c is bounded 

away from zero, an iteratively re-weighted least squares algorithm that combines the 
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iteratively re-weighted least squares algorithm used to fit ‘spatially stationary’ M-

quantile model (3) and the weighted least squares algorithm used to fit a GWR model 

can then be used to solve (9), leading to estimates of the form

# $ 1ˆ ( ; ) ( ; ) ( ; )T T
s s s s s su q X W u q X X W u q y$!

%A A! . (10)

Here sy  is the vector of n sample y values and sX  is the corresponding matrix of 

order n pB  of sample x values. The matrix ( ; )sW u qA  is a diagonal matrix of order n

with entry corresponding to a particular sample observation equal to the product of 

this observation’s spatial weight, which depends on its distance from location u, with 

the weight that this observation has when the sample data are used to calculate the 

‘spatially stationary’ M-quantile estimate ˆ ( )q$! .

One may argue that (8) is over-parametrised as it allows for both local intercepts and 

local slopes. An alternative spatial extension of the M-quantile regression model (3) 

that has a smaller number of parameters is one that combines local intercepts with 

global slopes and is defined as

( ; , ) ( ) ( ; )T
qQ x u x q u q$ $$ ! &! " . (11)

Here ( ; )u q$&  is a real valued spatial process with zero mean function over the space 

defined by locations of interest. The model (11) is fitted in two steps. At the first step 

we ignore the spatial structure in the data and estimate ( )q$!  directly via the iterative 

re-weighted least squares algorithm used to fit the standard linear M-quantile 

regression model (3). Denote this estimate by ˆ ( )q$! . At the second step we use 

geographic weighting to estimate ( ; )u q$&  via

# $1

1 1

ˆ ˆ( ; ) ( , ) ( )
lnL

T
l q il il

l i
u q n w u u y x q$ $& $ !%

! !

! %- - . (12)
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Choosing between (8) and (11) will depend on the particular situation and whether it 

is reasonable to believe that the slope coefficient in the M-quantile regression model 

varies significantly between locations. However, it is clear that since (11) is a special 

case of (8), the solution to (9) will have less bias and more variance than the solution 

to (12). Hereafter we refer to (8) and (11) as the MQGWR and MQGWR-LI (Local 

Intercepts) models respectively.

4. USING M-QUANTILE GWR MODELS IN SMALL AREA ESTIMATION

In this section we describe how the spatial extensions of the M-quantile model can 

be used for small area estimation. In addition to the assumptions made at the start of 

section 2, we now assume that we have only one population value per location. That 

is, we can drop the index l. We also assume that the geographical coordinates of every 

unit in the population are known, which is the case for example with geo-referenced 

data. The aim is to use these data to predict the area j mean jm  of y  using the M-

quantile GWR models (8) and (11).

Following Chambers and Tzavidis (2006), we first estimate the M-quantile GWR 

coefficients # $;isq i s&  of the sampled population units without reference to the small 

areas of interest. A grid-based interpolation procedure for doing this under (3) is 

described in Chambers and Tzavidis (2006) and can be directly used with (11). We 

adapt this approach to the GWR M-quantile model (8) by first defining a fine grid of q

values over the interval (0,1) and then using the sample data to fit (8) for each distinct 

value of q on this grid and at each sample location. The M-quantile GWR coefficient 

for unit i with values iy  and ix at location iu  is finally calculated by interpolating 

over this grid to find the value iq  such that ( ; , )
iq i i iQ x u y$ ! . In either case, provided 

there are sample observations in area j, an area j specific M-quantile GWR 
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coefficient, ˆ
j%  can be defined as the average value of the sample M-quantile GWR 

coefficients in area j. Following Tzavidis and Chambers (2007), the bias-adjusted M-

quantile GWR predictor of the mean jm  in small area j is

# $/ 1
ˆ ˆ

ˆ ˆˆ ( ; , ) ( ; , )
j j

j j j

j jMQGWR CD
j j i i i i i i

i s i r i sj

N n
m N y Q x u y Q x u

n% %
$ $%

& & &

. /%
! " " %0 1

0 12 3
- - - (13)

where ˆ
ˆ ( ; , )

j
i iQ x u

%
$  is defined either via the MQGWR model (8) or via the MQGWR-

LI model (11).

There are situations where we are interested in estimating small area characteristics 

for domains (areas) with no sample observations. The conventional approach to 

estimating a small area characteristic, say the mean, in this case is synthetic 

estimation. Under the mixed model (1) the synthetic mean predictor for out of sample 

area j is / 1 ˆˆ
j

MX SYNTH T
j j i

U
m = N x

'

!%

&
- . Under the M-quantile model (5) the synthetic mean 

predictor for out of sample area j is 4 5/ 1 ˆˆ
j

MQ SYNTH T
j j i

i U
m N x $! ()*%

&

! - . We note that with 

synthetic estimation all variation in the area-specific predictions comes from the area-

specific auxiliary information. One way of potentially improving the conventional 

synthetic estimation for out of sample areas is by using a model that borrows strength 

over space such as an M-quantile GWR model. In this case a synthetic-type mean 

predictor for out of sample area j is defined by 

4 5/ 1
0.5

ˆˆ ; ,
j

MQGWR SYNTH
j j i i

i U
m N Q x u$%

&

! - .

We expect that when a truly spatially non stationary process is present, /ˆ MQGWR SYNTH
jm

will improve the efficiency of the other synthetic mean predictors. Empirical results 

that address the issue of out of sample area estimation are set out in section 6.
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5. MEAN SQUARED ERROR ESTIMATION

A robust estimator of the mean squared error of (3) was proposed in Tzavidis and 

Chambers (2007). Here we extend this argument to define an estimator of a first order 

approximation to the mean squared error of (13) under the MQGWR model (8). Our 

argument is easily extended to the MQGWR-LI model (11). A more detailed 

discussion of this approach to mean squared error estimation is set out in Chambers et 

al. (2007). To start we note from (10) that (13) can be expressed as a weighted sum of 

the sample y-values

/ 1ˆ MQGWR CD T
j j sj sm N w y%! , (14)

where

1
j j

j j jT T
sj sj ij i ij i

i r i sj j

N N n
w H x H x

n n& &

%
! " %- - . (15)

Here 1sj  is the n-vector with ith component equal to one whenever the corresponding 

sample unit is in area j and is zero otherwise and

# $ 1ˆ ˆ( ; ) ( ; )T T
ij s s i j s s s i jH X W u X X W u% %

%
A A! .

Given the linear representation (14), an estimator of a first order approximation to 

the mean squared error of this predictor can be computed following standard methods 

of robust mean squared error estimation for linear predictors of population quantities 

(Royall and Cumberland, 1978). Put ( )sj ijw w! . This estimator is of the form

# $2
/

ˆ
: 0

ˆˆ( ) ( , , )
k

k k

MQGWR CD
j ijk i i i

k n i s
v m y Q x u

%
+ $

@ &

! %- - (16)

where # $2 1 2( 1) ( 1) ( ) ( ) ( )ijk ij j j j ikw n N n I k j w I k j+ %! % " % % ! " C .

6. SIMULATION STUDIES

In this section we present results from simulation studies that were used to examine 

the performance of the small area estimators that were discussed in the preceding 
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sections. In section 6.1 we employ model-based simulations in which small area 

population and sample data were simulated based on different parametric assumptions 

about the distribution of errors and the spatial structure of the data. In section 6.2 we 

present a design-based simulation that is based on real survey data from the 

Environmental Monitoring and Assessment Program (EMAP) that forms part of the 

Space Time Aquatic Resources Modelling and Analysis Program (STARMAP) at 

Colorado State University.

6.1 MODEL-BASED SIMULATIONS

Two methods were used to simulate population data. In both, N = 10500 population 

values of x and y in J = 30 small areas were first simulated.  For each area j we then 

independently selected a simple random sample (without replacement) of size 

20jn ! , leading to an overall sample size of n = 600. This process was repeated 200 

times. The sample values of y and the population values of x obtained in each 

simulation were used to estimate the small area means.

The first method of simulation generated population values of y and x in small area j

according to the two-level model 1 2ij ij j ijy x " #! " " "  where ~ [0,1]ijx U , with random 

effects generated under two scenarios: (a) ~ (0,0.04)j N"  and ~ (0,0.16)ij N#  and (b) 

2~ (1) 1j X" %  and 2~ (3) 3ij X# % . The second method of simulation generated 

population values with random effects simulated under the same scenarios (a) and (b) 

but in addition allowed the intercept ,  and slope !  of the linear model for y to vary 

according to longitude and latitude. In particular, these location coordinates were 

independently generated as [0,50]U  with

0.2 0.2longitude latitude, ! B " B

and
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5 0.1 0.1longitude latitude! ! % " B " B .

Four different types of small area linear models were fitted to these simulated data. 

These were (i) a random intercepts version of (1), (ii) the linear M-quantile regression 

specification (3), (iii) the MQGWR model (8), and (iv) the MQGWR-LI model (11). 

The random intercepts model used in (i) was fitted using the lme function (Venables 

and Ripley, 2002, section 10.3) in R (R Development Core Team, 2004). The M-

quantile linear regression model (ii) was fitted using a modified version of the rlm 

function (Venables and Ripley, 2002, section 8.3) in R (R Development Core Team, 

2004). The MQGWR models in (iii) and (iv) were fitted using a straightforward 

modification of the functions used to fit (ii). Estimated model coefficients obtained 

from these fits were then used to compute the EBLUP (2), the bias-adjusted M-

quantile predictor (5), denoted MQ below, and the MQGWR and the MQGWR-LI 

versions of corresponding bias-adjusted M-quantile predictor (13).

Biases and root mean squared errors over these simulations, averaged over the 30

areas, are set out in Table 1. For Gaussian random effects and a spatially stationary 

regression surface, we can see that the EBLUP is the best predictor, as one would 

expect. The MQ, MQGWR and MQGWR-LI predictors all have similar bias and 

RMSE in this case. In contrast, when the underlying regression function is non-

stationary we see that the MQGWR and MQGWR-LI predictors are considerably 

more efficient than the MQCD predictor and the EBLUP.  Under Chi-squared random 

effects this relative performance is unchanged, although here the absolute differences 

in performance between the various predictors is much smaller. Finally, in Table 2 we 

show key percentiles of the across area distributions of the area level true and 

estimated mean squared errors (the latter based on (16) and averaged over the 

simulations) of the MQGWR and MQGWR-LI predictors, as well as the 
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corresponding area level coverage rates for nominal 95 per cent prediction intervals. 

In general the proposed mean squared error estimator (16) provides a good 

approximation to the true mean squared error. These results also show that when M-

quantile GWR fits are used in (16), then this estimator provides some underestimation 

of the true mean squared error of the corresponding predictor that also results in some

undercoverage of prediction intervals. This is consistent with both the MQGWR and 

the MQGWR-LI models overfitting the actual population regression function. 

However, this bias is not excessive, being more pronounced in the case of the 

MQGWR model.

6.2 A DESIGN-BASED SIMULATION

The actual survey data used in this design-based simulation comes from the U.S. 

Environmental Protection Agency's Environmental Monitoring and Assessment 

Program (EMAP) Northeast lakes survey (Larsen et al. 2001). Between 1991 and 

1995, researchers from the U.S. Environmental Protection Agency (EPA) conducted 

an environmental health study of the lakes in the north-eastern states of the U.S.A. 

For this study, a sample of 334 lakes was selected from the population of 21,026 lakes

in these states using a random systematic design. The lakes making up this population 

were grouped according to 113 8-digit Hydrologic Unit Codes (HUCs), of which 64 

contained less than 5 observations and 27 did not have any observations. The variable 

of interest was Acid Neutralizing Capacity (ANC), an indicator of the acidification 

risk of water bodies. Since some lakes were visited several times during the study 

period and some of these were measured at more than one site, the total number of 

observed sites was 349 with a total of 551 measurements. In addition to ANC values 

and associated survey weights for the sampled locations, the EMAP data set also 
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contained the elevation and geographical coordinates of the centroid of each lake in 

the target area.

The aim of the design-based simulation was to compare the performance of different 

predictors of mean ANC in each HUC. In order to do this, we first created a 

population of ANC values with similar spatial characteristics to that of the lakes 

sampled by EMAP. A total of 200 independent random samples were then taken from 

each HUC that had been sampled by EMAP, with sample sizes set to the greater of 

five and the original EMAP sample size in the HUC. No samples were taken from 

HUCs that had not been sampled by EMAP, leading to a total sample size of 652 

ANC values from 86 HUCs.

In order to generate a population dataset that had similar spatial structure to that of 

the EMAP sample data, we allocated ANC values to the non-sampled lakes as 

follows: (1) we first randomly ordered the non-sampled locations in order to avoid list 

order bias and gave each sampled location a ‘donor weight’ equal to the integer 

component of its survey weight minus 1; (2) taking each non-sample location in turn, 

we chose a sample location as a ‘donor’ for the thi  non-sample location by selecting 

one of the ANC values of the EMAP sample locations with probability proportional to 

# $2
,( , ) exp 0.5( / )

ii u uw u u d b! % . Here ,iu ud  is the Euclidean distance from the thi  non-

sample location iu  to the location u of a sampled location and b is the GWR 

bandwidth estimated from the EMAP data; and (3) we reduced the donor weight of 

the selected donor location by 1.

The relative bias (RB) and the relative root mean squared error (RRMSE) of 

estimates of the mean value of ANC in each HUC were computed for the same four 

predictors that were the focus of the model-based simulations. These results are set 

out in Table 3 and show that the M-quantile GWR predictors are much more efficient 
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that the EBLUP and M-quantile based predictors that ignore the spatial structure in 

the data. In particular, we see that for the non-sampled HUCs the use of the synthetic-

type predictors that borrow strength over space, defined in section 4, substantially 

improve prediction. Figure1 shows how different mean squared estimators tracked the 

true mean squared error of the different predictors in this simulation. Here we see that 

mean squared estimator described in Tzavidis and Chambers (2007), and its GWR 

form (16), perform well in terms of tracking the true mean squared error of the M-

quantile predictors. Some downward bias of (16) when used with the MQGWR model 

is reported, however. This is much less of a problem when (16) is combined with the 

MQGWR-LI model. Finally, we see that the Prasad-Rao estimator of the mean 

squared error of the EBLUP performs poorly as far as tracking area-specific mean 

squared error is concerned. This phenomenon has also been reported in other design-

based studies (e.g. Chambers et al., 2007).

7. APPLICATION: ASSESSING THE ECOLOGICAL CONDITION OF LAKES IN 

THE NORTHEASTERN U.S.A.

In this section we show how the methodology described in this paper can be 

practically employed for estimating the average acid neutralizing capacity (ANC) for 

each of the 113 8-digit HUCs that make up the EMAP dataset described in section 

6.2. Figure 2(a) shows the region of interest and the locations of the sampled lakes. 

ANC is a measure of the ability of a solution to resist changes in pH and is on a scale 

measured in meq/L (micro equivalents per liter). A small ANC value for a lake 

indicates that it is at risk of acidification. Figure 2(b) shows the distribution of ANC 

in the EMAP data. This is skewed and may contain influential data points. 

Furthermore, the Brunsdon et al. (1999) ANOVA test for spatial stationarity indicates 
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that the EMAP data are consistent with a process characterised by spatially varying 

relationships.

Predicted values of average ANC for each HUC were calculated using the M-

quantile GWR predictor (13) under the MQGWR model (8) and the MQGWR-LI 

model (11), with x equal to the elevation of each lake and with location defined by the 

geographical coordinates of the centroid of each lake (in the UTM coordinate system). 

The spatial weight matrix used in fitting these M-quantile GWR models was 

constructed using (7), with bandwidth selected using cross-validation. 

Figure 3 shows contour maps of the estimated HUC-specific intercepts and slopes

from the fitted MQGWR model (8), i.e. when this model is fitted using the HUC-

specific M-quantile coefficients ˆ
j% . These maps support the assumption of non-

stationarity in the data. Finally, in Figure 4 we show maps of estimated values of 

average ANC for each HUC using the MQGWR model, the MQGWR-LI model, the 

spatially stationary M-quantile model (3) and the linear mixed model (1). The two M-

quantile GWR models provide similar estimates of average ANC for each HUC and 

are consistent with the patterns produced by other analyses of the EMAP data using 

non-parametric models (Opsomer et al., 2005). There are also substantially different 

from the estimates produced by the spatially stationary models (1) and (3), which 

show lower levels of average ANC (and hence greater risk of water acidification) for 

these HUCs.

8. SUMMARY

In this paper we propose a geographically weighted regression extension to M-

quantile regression that allows for spatially varying coefficients in the model for the 

M-quantiles. These M-quantile GWR models have the potential to lead to 

significantly better small area estimates in important application areas where geo-
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referenced data are available, such as financial and economic statistics, environmental 

and public health modelling. Like the M-quantile regression model of Chambers and 

Tzavidis (2006), the M-quantile GWR model described in this paper allows modelling 

of between area variability without the need to explicitly specify the area-specific 

random components of the model. In particular, this model does not explicitly depend 

on any particular small area geography, and so can be easily adapted to different 

geographies as the need arises.

One problem that arises with specifying an M-quantile GWR model is deciding 

which parameters of the model vary spatially (i.e. are local parameters) and which do 

not (i.e. are global parameters). In this paper we have explored two M-quantile GWR 

models that exemplify this issue – the MQGWR model where both intercept and slope 

parameters in the model vary spatially and the MQGWR-LI model where only the 

intercept parameter varies spatially. Further research is necessary in order to develop 

appropriate diagnostics for deciding between them.
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Table 1 Median values of Bias and RMSE over areas and simulations.

Stationary process Non-stationary processPredictor Bias RMSE Bias RMSE
Gaussian random effects

EBLUP 0.001 0.079 -0.003 0.205
MQ 0.001 0.088 0.001 0.188
MQGWR -0.003 0.088 -0.005 0.098
MQGWR-LI 0.001 0.087 -0.005 0.107

Chi-squared random effects
EBLUP 0.075 0.482 -0.017 0.558
MQ -0.021 0.526 -0.015 0.554
MQGWR 0.035 0.539 0.022 0.534
MQGWR-LI 0.009 0.525 0.004 0.541

Table 2 Across areas distribution of true (i.e. Monte Carlo) root mean squared errors, 
area averages of estimated root mean squared errors and area coverage rates (CR%) 
for nominal 95% prediction intervals.

Percentile of across areas distributionPredictor Indicator 10 25 median Mean 75 90
Stationary process,Gaussian errors

True RMSE 0.080 0.084 0.088 0.087 0.091 0.093
Est. RMSE 0.076 0.078 0.081 0.081 0.083 0.085MQGWR

CR(%) 89.51 90.34 91.72 91.88 93.71 94.48
true RMSE 0.079 0.085 0.087 0.086 0.090 0.090
Est. RMSE 0.077 0.079 0.082 0.082 0.083 0.086MQGWR-LI

CR(%) 90.45 91.13 93.00 92.88 94.50 95.00
Non-stationary process, Gaussian errors

true RMSE 0.090 0.092 0.098 0.098 0.103 0.106
Est. RMSE 0.074 0.076 0.078 0.079 0.081 0.084MQGWR

CR(%) 84.30 85.00 87.00 87.08 89.38 90.50
true RMSE 0.096 0.097 0.107 0.112 0.114 0.138
Est. RMSE 0.085 0.088 0.098 0.100 0.103 0.122MQGWR-LI

CR(%) 88.50 90.50 91.50 91.25 92.88 93.05
Stationary process, Chi-squared errors

true RMSE 0.489 0.507 0.539 0.539 0.564 0.577
Est. RMSE 0.463 0.489 0.507 0.506 0.529 0.542MQGWR

CR(%) 85.71 89.10 90.38 90.24 92.15 92.44
true RMSE 0.488 0.500 0.525 0.528 0.552 0.574
Est. RMSE 0.467 0.486 0.505 0.508 0.528 0.543MQGWR-LI

CR(%) 87.00 90.50 91.00 90.88 92.50 93.10
Non-stationary process, Chi-squared errors

true RMSE 0.494 0.507 0.534 0.535 0.562 0.574
Est. RMSE 0.448 0.470 0.488 0.488 0.512 0.524MQGWR

CR(%) 85.50 88.13 90.00 89.40 91.00 92.05
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true RMSE 0.505 0.518 0.541 0.542 0.557 0.588
Est. RMSE 0.485 0.501 0.515 0.514 0.529 0.537MQGWR-LI

CR(%) 88.95 90.63 91.50 91.07 92.38 93.05

Table 3 Design-based simulation results using the EMAP data. Results show medians 
of Relative Bias (RB) and Relative Root Mean Squared Error (RMSE) over areas and 
simulations.

Predictor RB (%) RRMSE (%)
86 sampled HUCs

EBLUP 8.51 43.41
MQ -1.15 40.29
MQGWR -0.25 26.12
MQGWR-LI -0.69 28.52

27 non-sampled HUCs
EBLUP -36.59 53.76
MQ -66.29 68.65
MQGWR -3.69 17.50
MQGWR-LI -3.69 17.51
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Figure 1 HUC-specific values of actual design-based RMSE (solid line) and average 
estimated RMSE (dashed line). Top left is the EBLUP predictor (2) with RMSE 
estimator suggested by Prasad and Rao (1990). Top right is the M-quantile predictor 
(5) with RMSE estimator suggested by Tzavidis and Chambers (2007). Bottom left is 
MQGWR version of (13) with RMSE estimated using (16) and bottom right is the 
MQGWR-LI version of (13) with RMSE also estimated using (16).
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Figure 2 (a) Locations of the sampled lakes in Northeastern U.S.A. (b) Histogram of 

ANC values in the EMAP data.

(a) (b)

Figure 3 Maps showing the spatial variation in the HUC specific intercept and slope 
estimates that are generated when the MQGWR model is fitted to the EMAP data.

Intercepts Slopes
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Figure 4 Maps of estimated average ANC for all 113 HUCs. The first map shows 
estimates computed using (13) and the MQGWR model (8), the second map shows 
estimates computed using (13) and the MQGWR-LI model (11), the third map shows 
estimates computed using (5) and the stationary M-quantile model (3) and finally the 
fourth map shows estimates computed using (2) and the linear mixed model (1).
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