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Section 1: Introduction: why is multilevel analysis useful? 

 

A Standard multiple regression analysis is a single level analysis, whether it be at the individual 

level or at the group level. We could investigate the association between the average blood 

pressure in each district of the North West and  the association of this dependent variable with 

district level explanatory variables, such as the unemployment rate. Hence we could look at 

district level data and make inferences about district level relationships.  We could also consider 

a multiple regression analysis where we relate an individual’s blood pressure to a set of 

explanatory variables. Hence we can look at individual level data to make inferences about an 

individual level relationship.  But how do we take both the district level and the individual into 

account at the same time, and why does this matter? Multilevel modelling techniques allow us to 

assess variation in a dependent variable at several levels simultaneously: for example, we can 

assess how much a health measure like blood pressure varies between areas and how much it 

varies between individuals within the areas, or we can assess how much examination scores vary 

between schools compared with the extent of variation in examination scores for pupils within 

schools, similarly we could compare variations in unemployment or limiting long term illness at 

the individual and area levels. We will cover some of the underlying theory of multilevel 

models, and use some specialist software for fitting multilevel models (MLwiN). We will also 

discuss the data requirements to allow a ‘standard’ multilevel analysis to be carried out.  

 

The ecological fallacy. 

 

If we assume that an equation we estimate at district level also occurs at the individual level, that 

is to make a cross level inference, we are not allowing for the fact that people vary within each 

district. To make such a cross level inference is therefore generally not sensible. This 

phenomenon is often referred to as ‘the ecological fallacy’ (‘ecological’ meaning, in this 

context, the area in which each person lives and nothing to do with the field of ecology.).  

 

 

 



Problems of ignoring population structure. 

 

If we carry out an analysis at the individual level and do not assume any higher level grouping 

or ‘clustering’ in the population we ignore the fact that, in general, clustering occurs in a 

population. Consider the population of Manchester, for example: this is not randomly 

distributed. Instead, there are deprived and prosperous areas and people will be clustered in 

terms of their personal characteristics. If we do not recognise this in our analysis, we are 

ignoring the population structure, and statistics that we calculate from analysis that ignores 

population structure will often be biased. For example, we may obtain an estimate of a 

parameter and its corresponding standard error. If we ignore the population structure, it is 

possible we could obtain a biased estimate of the standard error and hence if we then carry out 

statistical tests or construct confidence intervals using these biased standard errors the results 

will be misleading. 

 

Multilevel modelling. 

 

Multilevel modelling techniques developed rapidly in the late 80s, when the computing methods 

and resources for this modelling procedure improved dramatically. Much of the literature on 

multilevel modelling from this period focuses on educational data, and explores the hierarchy of 

pupils, classes, schools and sometimes also local education authorities. Measures of educational 

performance, such as exam scores are usually the dependent variables in this research.  

 

Multilevel modelling allows relationships to be simultaneously assessed at several levels. 

Consider a two level example: a sample of 900 pupils in 30 schools in England. Each pupil 

attends a particular school, and we regard the schools as a sample of all schools in England. 

Therefore, we can generalise from the multilevel model parameter estimates about all schools in 

England, and the model we are fitting allows for the hierarchical nature of the data: pupils in 

schools. 
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Examples of multilevel relationships 
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Some substantive multilevel examples, with the units of  interest at each level 

 

Schools. Variations in exam performance. 

 

Level 3: school 

Level 2: class 

Level 1: pupils 

 

Variations in exam score. 

 

Areas: Variations in health 

 

Level 3: Counties 

Level 2: Districts 

Level 1: people 

 

People: Dental data 

 

Level 2: People’s mouths 

Level 1: teeth 

 

 

Time as a level. 

 

Level 2: Person 

Level 1: Occasion 

 

 

Multivariate. 

 

Level 2: Pupil 

Level 1: subject of exam score. 
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Nesting.  

 

Level K-1 units contained in level k units. 

 

Cross classified. 

 

Non overlapping higher level units – school and neighbourhood at level 2, pupil at level 1. 

 

Continuous response. 

 

Rather like multiple regression 

 

Binary response. 

 

Rather like logistic regression 

 

Data requirements. 

 

The most common case is to have individual level data, that includes a variable the indicates the 

higher level unit for each case, e.g. pupil data that includes an identifier the school that they 

attended on the dataset. 

 

Contrast this with the fixed effects idea. If we are interested in, say, 3 schools we should fit 2 

dummy variables for school. Such an analysis would allow us to compare the three schools in 

our sample but not to generalise the results to all schools. But this seems fair enough: we would 

not want to generalise about ‘all schools’ based on an analysis of only 3 schools. 

 

If we have a reasonable number of schools in our sample (at least 20 or more; ideally 30 more.) 

and we can assume the schools in our sample are representative of all schools in our population 

of interest, a multilevel approach allows us to obtain estimates which we can use to generalise 

about all schools in the population. We could fit a fixed a effects model for our sample if it had 

30 schools, but we would need 29 dummy variables to compare the 30 schools, so this would not 

be a very easy model to fit, or to interpret. 
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As a rule of thumb, we should use a fixed effects analysis when we only have a small number of 

higher level units, like schools. 

 

Another way to deal with a sample of data for a number of schools would be to split the sample 

into sub-groups for each school and do separate analyses, but then we are not really making full 

use of the whole sample.  

 

Multilevel analysis is therefore a very useful technique. We should be aware of the fixed effects 

analysis, and what this kind of analysis enables us to do, but we should probably only use fixed 

effects when we only have a few higher level units in our sample.  

 

Software 

 

Of course the multilevel approach does require multilevel software. This may be a specialist 

package for multilevel modelling or part of a more general statistical analysis software package. 

Mlwin is one such specialist package. Other specialist multilevel packages include HLM and 

VARCL. Other general statistical packages that I am aware of that allow multilevel analyses are 

STATA and SAS. 
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Section 2: Multilevel models for a continuous response. 

 

Fixed effects.  

 

Theory 

 

Consider the following theory in terms of the 2-level example of 4059 pupils in 65 schools. The 

dependent variable, y, is an exam score. The explanatory variable, x, is a reading test score.  

 

Single level models: 

 
Model 1: Pupil level model 

iii exy ++= 10 ββ

 

Var(yi) = σ2  

 

i is a subscript denoting the pupil. i= 1 to 4059. ei is a (pupil level) error term. 

 

 

Model 2: School level model, based district means: we can fit this by aggregating the data. 

 

jjj exy ++= 10 ββ
 

j is a school level subscript j=1,…65 

 

is the school mean exam score.    
jy

 

 
jx     is the school mean reading test score. 

 

 
je is the school level error term.       
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Multilevel models: 

 

Model 3: 2 level ‘empty model’, or ‘variance components’ model. 

Called an ‘empty model’ because there are no explanatory variables. 

 

 

ijjij euy ++= 0β  

 

Var(yij) = σ2
u+σ2

e = σ2

 

i is the pupil subscript 

j is the school subscript 

 

σ2
u  measures variation in schools. 

σ2
e  measures variation in pupils.  

 

σ2
u /σ2

 = the intra class correlation: the proportion of the overall variation in exam score 

attributable to schools. i.e. how similar are exam scores within schools. Like a correlation, the 

higher the value the more similarity of pupils in schools with respect to the dependent variable. 

But note the intra class correlation does not really tend to have values as high as the usual 

pearson correlation that is used to measure the association of two variables. Note also that 

‘class’ here has nothing to do with classes in the school.  

 

Model 4: 2 level model: pupils in schools, with an explanatory variables. 

 

 
ijjijij euxy +++= 10 ββ

 

In model 4 we have added an explanatory variable but we assume that the relationship  

Between the explanatory and dependent variable is the same in all schools, but that there is a 

different intercept. 

 

Model 5: random slopes 
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ijjijjij euxy +++= 010 ββ  

 

Where the ‘random slopes coefficient is: 

jj u111 += ββ
 

Or alternatively, but equivalently, we can write the model as: 

 

ijjijjijij euxuxy ++++= 0110 ββ
 

 

In model 5 we assume that the relationship between the explanatory variable and dependent 

variable can be different in each school. 

To estimate the parameters in the multilevel models, we use an iterative method.  

For example, the default in MLwiN is the iterative generalised least squares method. 

We look at the residuals to see which higher level unit (e.g. school) has an extreme intercept 

and/or slope. 

 

Group level variables  

 

Multilevel modelling allows us to specify variables at any level, not just the individual. Hence in 

the current example we could include group level variables. These can be either true group level 

variables, like a variable that describes the type of school (e.g. mixed or single sex), or 

contextual, which are a function of the individuals in the group, such as the proportion of pupils 

in the school having free school meals. Thus a we could fit a model such as: 

 
ijjjjijjij euzwxy +++++= 03210 ββββ

 

Where 

jw  indicates the type of school, and 

jz  is the proportion of pupils in the school that have free school meals. 

 

These group level variables could also be fitted as random terms in a multilevel model. 
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Section 3: Practical session for multilevel models with a continuous response. 

 

Note on Data – please note these data are taken from the MLwIN tutorial dataset. A further 

useful discussion can be found in the MLwiN user guide (Rasbash et al 2000), which is supplied 

when copies of MLwiN are purchased. Website: multilevel.ioe.ac.uk 

 

Data. 

 

The data are from 4059 pupils aged 16 in 65 schools. We are interested in the relationship 

between exam score (NORMEXAM), the dependent variable, and reading test score 

(STANDLRT), an explanatory variable. Further explanatory variables could be added to the 

model, including characteristics of the pupil and/or characteristics of the school. We will use 

Mlwin to carry out a multilevel analysis of these data. The following pages show helpful screen 

shots of mlwin output  and we will work through these. One thing I should stress about Mlwin at 

the onset is that it is sensible to save the worksheet very often as the programme can become 

unstable and crash unexpectedly.  

 

Mlwin 

 

Depending  on which machine you are using, either Click on the icon for ml win, or run it from 

the start menu in windows. I will explain in the workshop.  

  

You should see a grey screen. We first need to open an ml win worksheet. Format .ws files are 

ml win worksheets and these are like spss .sav files in that all variable names etc are retained. In 

worksheet files all the current model setting are also saved.  Note that Mlwin can also read 

ASCII format data (more on this later). First we open the worksheet from the FILE menu. 
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The open worksheet window comes up ( nb your screen might look slightly different to the one 

below If your file is in a different directory or being read from disk).  

 
NAMEs lets us see the names, number of cases and range for each variable. Categories tells  us 

about the categories for categorical variables. 
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The variables  we will look at this morning are: 

 

School = school ID 

Student = pupil ID 

Normexam = a standardised exam score 

Cons = a constant term (always takes the value 1). 

Standlrt = a standardised reading test score 

Gender = gender of the pupil (0=boy, 1 = girl) 

Schgend = type of school (1=mixed, 2=boys only, 3=girls only). 
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We can also view the data 
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To specify a model go to the equations option in the model menu. The default is for a normally 

distributed continuous response variable. 
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The response (the Y) variable is NORMEXAM, and we specify a two level model with schools 

at level 2 and pupils at level 1. 

 
 

We can also view the population with the hierarchy viewer. This shows us our two level 

population: 4059 pupils in 65 schools. 
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For the x variable, we begin with the most basic variable. A constant (CONS). This allows us to 

assess the extent of variation in NORMEXAM at the pupil and school levels. This is model 3 on 

page 11 as specified in the theory section above and you can see the equations below. Click on 

the estimates button to make the full model appear in your equations window. Items in blue are 

to be estimated via an iterative process. When these estimates converge as the procedure iterates 

they turn green. We can see the values by clicking on the estimates button again. The NAME 

and SUBS buttons are also useful for seeing the names of variables and subscripts on the output.  
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Now click on START in the top left of the main Mlwin window to make the model estimation 

process begin. 

 
 

** NB save the worksheet before continuing! **  

 

In the equations window above, the green, converged, estimates are shown after a few iterations, 

and we can see that the school level variance component is 0.169 and the pupil level estimate is 

0.848.  Hence the intra school correlation is 0.169 / (0.169+0.848) = 0.166. This suggests that 

around 16.6% of the variation in NORM exam is at the school level and the remaining variation 

is at the pupil level. However, so far we have not allowed for any explanatory variables. Let’s 

try adding one in now to fit a multilevel model with random intercepts (like Model 4 in the 

theory section above on p11.). To do this click the add term button. 

We will add in STANDLRT as an explanatory variable as shown below. 
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Click on ‘MORE’ or ‘START’ in the top left corner of the mlwin screen. Start starts the 

estimation from scratch. MORE continues the estimation based on the values of those already 

estimated in the previous model and may be quicker to get to the answer when you have a huge 

dataset. Note also when you do have a huge dataset you can increase the size of the mlwin 

worksheet via the options menu.  

 

When we fit the model with the explanatory variable we get the following results. 
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These results imply: 

• a positive association between NORMEXAM and STANDLRT. A statistically 

significant coefficient (the estimated coefficient is more than twice its standard error). 

• conditional on knowing the STANDLRT score of the pupils, a school level variance 

component of 0.092 (smaller than before) 

• conditional on knowing the STANDLRT score of the pupils, a pupil level variance 

component of 0.566 (smaller than before) 

• conditional on knowing the STANDLRT score of the pupils, an intra school correlation 

of  0.139 – we have explained some of the between school variation by including standlrt 

as an explanatory variable. 

 

Save these results as a worksheet called  int.ws
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What about random slopes? Let’s try fitting a model like (3) in the theory section above. 

 

 
 

We see that we have now fitted quite a complicated model and all the results are statistically 

significant. The positive covariance of 0.018 between intercept and slope means that schools 

with steep slopes have high intercepts and schools with shallower slopes have lower intercepts.  

Save these results in a worksheet called slope.ws 

 

Graphs 

 

What do all these estimated models look like as graphs? We can look at them via the graphs 

menu. First we will plot the data. Dependent variable vs explanatory variable. We see a general 

positive association between the two variables for all 4059 pupils. 
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normexam 

standlrt 

 

 

Predicted values. For those models that include an explanatory variable we will now produce 

plots of the predicted values. First the random intercepts model. We must begin by obtaining the 

predicted values for this model which. First re-open the worksheet with the results of this model 

for random intercepts ( int.ws ). Next go to the model menu and choose ‘predictions’.  
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now go to the names window and name C11 = PRED1 
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pred1 

standlrt 

 

 

Now open the slope.ws worksheet and we can see the graph of the predicted values for the 

random slopes model. Calculate the predictions as pred2 

 
then plot them. Against the x variable (STANDLRT)
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pred2 

standlrt 
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Which line is which? Click on the top line, with the steepest slope. 

 
We can see that this line is for school 7. 
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Residuals – based on int.ws worksheet.  

 

It is of interest to obtain the residual values from the estimated multilevel model. These tell us 

which schools have intercepts higher than the overall intercept for all 4059 pupils and which 

have lower. Plots are a good way to examine the residuals so we will produce some plots here. 

 

[NOTE: change SD (comparative) to 1.4 (see paper by Goldstein and Healy, Journal of the 

Royal Statistical Society (A), 158, Part 1, 1995) for more details on comparing means of several 

groups in multilevel populations). Calculate the residuals at the school level.] 

 
 

In multilevel modelling, we are assuming that the school level variations are based on a 

distribution. We can assess whether it is reasonable to assume that this distribution is normal via 

a normal probability plot. The more normal the distribution, the more diagonal the line.  
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Next we can produce a plot the ranks the school residuals and plots then with ‘error bars’ which 

enable schools to be compared. The schools whose error bars do not overlap can be said to be 

statistically significantly different at the 5% significance level. The length of the error bar 

interval is influenced by the number of pupils in the school on the dataset. Wider intervals occur 
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for schools with few pupils (in the sample) and narrower intervals for schools with more pupils 

(in the sample).  

 

 
 

We can also see the residuals by viewing the appropriate columns of the worksheet. 65 residuals 

are calculated, one for each school. We see from the data that school 1 has a residual of .37376, 

ranked 57th largest of all residuals. 
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Section 4: Multilevel models for a binary response variable.  

 

Introduction 

 

This section is concerned with multilevel models that have a binary response. In many situations 

the response variable is not continuous but is instead ‘binary’ (or sometimes called 

‘dichotomous’ or a ‘0/1 variable’). For example, we might be interested in whether or not a 

person is unemployed and would have a response variable coded 1=unemployed, 0=not 

unemployed. Similarly we could be interested in whether or not a person has limiting long term 

illness, and variations in long term illness by ‘place’. We might be interested in the comparative 

role of place specific and personal characteristics in explaining the propensity to be unemployed. 

For example, unemployment may be associated with a person’s own characteristics and (or) by 

the characteristics of the place in which they live. 

 

The example we will consider in this section is concerned with variations in unemployment for 

economically active individuals aged 18 and over in the North West of England. We will first 

describe the dataset and models and then try out an example using MlwiN.  

 

The models 

 

Model 6: 

 

The basic (two level) multilevel model for a binary response is written as follows. 

 

Define 

 

ijijij epy +=   (6a) 

 

where yij takes the value 0 or 1 for each individual i in group j (0=not unemployed, 

1=employed), pij is the predicted probability for individual i in area j. eij is an individual level 

error. 

 

and 
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jppij uxxxp +++++= ββββ ...)(Logit 22110   (6b) 

 

Where β0 is the ‘intercept’ and, β1 to βp are the coefficients of the p explanatory variables 

(which may be continuous or dummy variables). uj is the level 2 error term. Important: because  

the part of the model shown by equation (6a) is for a binary response variable there is no level 1 

error term. This has been specified in equation (6b). Note that the model could be extended to 

include more levels by including error terms at all levels above the individuals. The model 

shown above is of the form of a ‘random intercepts model’ that we saw this morning. Model () 

could be extended to include random coefficients for the explanatory variables, and could 

therefore be of the form of a ‘random slopes’ model. 

 

The data 

 

The dataset is derived from the 1991 individual Sample of Anonymised Records (the actual data 

is cut down version of the SAR to make it practical to use in the practical sessions). The 

population is all individuals living in the North west of England. As well as containing a unique 

identifier of the individual, these data also contain an identifier of the SAR area (typically one 

local authority) in which the individual lives. Hence the data allow us to fit a 2 level multilevel 

logistic regression model. A full list of the variables that are included on the dataset, with details 

of codings, is given in Appendix 1. The variables we are going to focus on now are a subset of 

those available on the worksheet. The worksheet has a more comprehensive set of variables to 

enable you to try out further modelling of the data if time permits. 

 

Special variables for multilevel logistic regession.  

 

Note that Mlwin always requires that we have the following variables in our worksheet 

 

CONS – constant term  

BCONS – a second constant term 

DENOM – a denominator 

 

 32



If you look back at the model for multilevel logistic regression, you can see that the model is not 

like the multilevel model for a normal response. Instead of directly modelling the y variable, as 

we did for a continuous response, in multilevel logistic regression, we first re-write the response 

variable as a predicted probability and an error term (the individual level error) and then we 

model the predicted probability  

 

Hence we write down a multilevel model that contains error terms for all levels above the 

individual, but not the individual level, and allow for the individual term separately through the 

bcons variable. The cons term is used to allow for the errors above the individual level. Hence 

both cons and bcons are used in the model. 

 

The other variable we need is called ‘DENOM’ meaning denominator. Some of you will have 

done logistic regression before and will know that these models can be used to model table data 

where one of the variables is a response. Hence we can write exactly the same data as 

 

A) a list 

 

sex llti 

0 0 

0 1 

0 1 

0 0 

1 1 

1 0 

1 1 

1 1 

1 0 

 

b) a table 

 

 Sex=male (0) Sex=female (1) Row total 

Llti=no (0) 2 2 4 

Llti =yes (1) 2 3 5 
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Column Total 4 5 9 

 

For the list data DENOM is always  1 because we are looking at each person and at a time and 

we have a variable whether or not they have limiting long term illness, we also record their sex 

as 0 =male, 1=female. For the table data we take all the males and see how many of them have 

llti, hence for the table data, for males the denom is 4  and for females the denom is 5. Both 

forms of data can be modelled in mlwin. List data has greater flexibility but takes up more space 

than table data. Table data has less flexibility but takes up less space than list data. In this 

practical we will use list data as it is easier to explain the methods for this practical and it makes 

the dataset more flexible As we are using list data here, denom is always = 1.  

 

If all of this is a little confusing, the good news is that we always use these variables in Mlwin 

for logistic multilevel modelling and the denominator must always be called DENOM. So it is 

sufficient to simply include them on your M|LwiN worksheet and not get too involved in the 

technicalities! 
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Section 5: Mlwin – begin by opening the worksheet binary.ws 

    

 

 

 

 
 

If you go to the equations window, you see that the default equation comes up. 
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Specify unemployment as the y variable with areap (SAR areas) at level 2 and individuals at 

level 1. 

 
Choose the binomial distribution by clicking on the ‘normal’ N and changing it. Binomial is 

used for logistic regression. 

 

 36



Specify CONS and BCONS as x variables as follows.  

 
The default nonlinear options are then chosen by clicking on the nonlinear button and clicking 

on ‘use defaults’.  
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We begin by fitting a variance components model. Note that it is much much harder to calculate 

intra class correlations for a binary response multilevel model. For a discussion of methods see 

Goldstein, Brown and Rasbash (2000). 

 
Next we add in an age explanatory variable 
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We can obtain predicted probabilities from this model – save them as PRED3 

 
 

Now plot the predicted value by age for each model using the graph options. 

 
We see a negative relationship between logit (unemployed) and age. 
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We could also fit a random slopes model.  

 
The slope terms are not statistically significant. 

 

We will now add some more explanatory variables to the model. A quick way to do this is via 

the estimate tables window, first choose this from the model menu and then click on the 

plus/minus button. 
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The current variables in the model are indicated with a cross. 

 
 

We can add in some dummy variables for the 10 ethnic groups. We need 9 dummy variables. 

 
 

When we run the model we can compare the ethnic groups. ‘white’ is the baseline ethnic group.  
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Note that we can choose more sophisticated estimation procedures for the model via the 

nonlinear options window. These often give results  very similar to the default, but in some 

circumstances PQL estimation may be preferable to MQL and it is useful to see that different 

kinds of estimation are available.  
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Residuals. 

 

We can calculate and plot residuals for the model with no explanatory variables to see the extent 

of variation in unemployment in areas of the North West. 

 
We calculate the residuals as before (but note: these residuals are on the logit scale). 
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When we compare the groups we find that the areas with two  the highest residuals (highest 

levels of unemployment) are Liverpool, Manchester, And the two lowest residuals are for Ribble 

valley and Macclesfield.  
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If we fit a more sophisticated model, which includes details of ethnic group, housing tenure and 

age we can again calculate and plot the residuals from this model. 
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We see that the two highest residuals are still Liverpool and Manchester, and the lowest two 

residuals are Ribble valley and Warrington. However, notice that the range of the residuals has 

reduced, compared with the model with no explanatory variables. Hence we have explained 

some of the variation by including information on age, ethnic group and housing. 

 

Section 6: further topics. 

 

ASCII data. 

 
Data should be in the following format for use with ml win. We can save it as tab delimited ascii 

data. E.g is spss tab delimited ascii. If possible sort the data by area (or whatever the groups are) 

prior to inputting to mlwin; but note you can sort data in mlwin if necessary). We can read in 

fixed format data, or as data in columns (as shown below). Data in columns is easiest read in and  

the procedure will be described here. For more details of reading in data see the Mlwin User 

guide. 

 

Format of data: assume this is c:\data\ascii.dat 
 
Area person  blood pressure  age 

 
1 1  100   34 
1  2  120   45 
1 3  150   60 
1 4  107   31 
1  5  125   37 
1 6  144   58 
2 1  102   33 
2 2  99   21 
2 3  102   45 
2 4  101   36 
2 5  123   72 
2 6  112   56 
2 7  101   55 
2 8  102   24 
 
 
We would read this data by going to the file menu and choosing ascii text file input and 

then specifying that we have 4 columns of data as follows: 
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Suggested Reading list 

Hox, JJ (1994) Applied multilevel analysis Amsterdam TT-Publikaties.  

Kreft, I and De Leeuw, J (1998) Introducing multilevel modelling. London. Sage publications. 

* Snijders and Bosker (1999) Multilevel analysis: an introduction to basic and advanced 

multilevel modelling. Sage. [a good all round book at a reasonable price] 

* Plewis, I (1997) Statistics in Education. Edward Arnold.  

* Dale, A, Fieldhouse, E and Holdsworth, C. (2000) Analysing Census Microdata. Edward 

Arnold: London. [Includes section on multilevel modelling and general statistical analysis + a 

good reference for the SAR microdata] 

 

note * are also on the Advanced Data analysis reading list for the msc in social research methods 

and statistics run at Manchester University. 

 

More technical references 

Goldstein H. (1995) multilevel statistical model, Edward Arnold, London. In electronic form at 

www.arnoldpublishers.com/support/goldstein.htm [a technical book, very comprehensive] 

 
Goldstein H, Browne W and Rasbash J (2000) “Extensions to the intra-unit Correlation 
Coefficient to Complex Generalised Linear Multilevel Models. 
http://multilevel.ioe.ac.uk/team/materials/icccglmm.pdf
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Websites: 

 

http://multilevel.ioe.ac.uk 

 

Includes details of current developments and publications in multilevel modelling.  

 

Other examples of work with multilevel models. www.ioe.ac.uk/multilevel/publications

 

These notes are by Mark Tranmer, 2004.
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Assignment – FOR 5 CREDITS  

 

(nb: people doing Advanced Data Analysis by Short Course do not need to do this 

assignment.) 

 

1. Briefly describe a multilevel population indicating the units of interest at each level. 

 

2. Write down a (two level) multilevel model for a response (i.e dependent) variable of 

interest that is: 

(i) a continuous variable – random intercepts model  

(ii)  a continuous variable – random slopes model 

(iii) a binary variable 

 

3. The following results were obtained when a variance components model was fitted in 

MLwiN The population has two levels, with individuals, indexed by i, living in areas, 

indexed by j, for a variable with a continuous response. Write down the variance 

components estimates for the individual level and the area level. Calculate and interpret 

the intra-area correlation.  
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Hand in all work to Margaret Martin, Room NG22 Dover Street Building ground floor. 

Tel 0161 275 4589 email margaret.martin@man.ac.uk

 

Assignment deadlines: for those people taking the assessed part of the course, for credits. 

The deadline is Friday March 26th 2004. 
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Appendix 1: details of binary.ws variables 

 
Name Details 

AREAP SAR AREA 

AGE AGE OF INDIVIDUAL 

LTILL LIMITING LONG TERM ILLNESS: 0=NO 1=YES 

SEX SEX OF INDIVIDUAL 0=MALE, 1=FEMALE 

DENSITY MORE THAN 1 PERSON PER ROOM 0=NO 1=YES 

INDIVIDUAL INDIVIDUAL ID 

CONS CONSTANT TERM 

BCONS CONSTANT TERM 

UKBORN BORN UK 0=NO 1=YES 

UNEM UNEMPLOYED 0=NO 1=YES 

C-HEAT CENTRAL HEATING IN HOME 0=NO, 1=YES 

DENOM DENOMINATOR VARIABLE (ALWAYS=1 HERE) 

WHITE WHITE ETHNIC GROUP 0=NO 1=YES 

BLACKC BLACK CARIBBEAN 0=NO, 1=YES 

BLACKAF BLACK AFRICAN 0=NO, 1=YES 

BLACKOTH BLACK OTHER 0=NO, 1=YES 

INDIAN INDIAN 0=NO, 1=YES 

PAKISTANI PAKISTANI 0=NO, 1=YES 

BANGLAD BANGLADESHI 0=NO, 1=YES 

CHINESE CHINESE 0=NO, 1=YES 

OTHERAS OTHER ASIAN 0=NO, 1=YES 

OTHER OTHER ETHNIC GROUP 0=NO, 1=YES 

DETACHED LIVES IN DETACHED HOUSE 0=NO, 1=YES  

SEMI LIVES IN SEMI DETACHED HOUSE 0=NO, 1=YES 

TERRACED LIVES IN TERRACED HOUSE 0=NO, 1=YES 

FLAT/FLATLET LIVES IN FLATFLATLET 0=NO, 1=YES 

OTHERHTYPE 0=YES 1=NO 

OO  OWNER OCCUPIER O=NO, 1=YES 

RENT PRIV RENT PRIVATELY 0=NO, 1=YES 

RENT LA RENT FROM LOCAL AUTHORITY 0=NO, 1=YES 

RENT OTHER RENT FROM SOMEWHERE ELSE 0=NO, 1=YES 
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