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Section 1: Introduction: why is multilevel analysis useful?

A Standard multiple regression analysis is a single level analysis, whether it be at the individual
level or at the group level. We could investigate the association between the average blood
pressure in each district of the North West and the association of this dependent variable with
district level explanatory variables, such as the unemployment rate. Hence we could look at

district level data and make inferences about district level relationships. We could also consider

a multiple regression analysis where we relate an individual’s blood pressure to a set of

explanatory variables. Hence we can look at individual level data to make inferences about an

individual level relationship. But how do we take both the district level and the individual into

account at the same time, and why does this matter? Multilevel modelling techniques allow us to
assess variation in a dependent variable at several levels simultaneously: for example, we can
assess how much a health measure like blood pressure varies between areas and how much it
varies between individuals within the areas, or we can assess how much examination scores vary
between schools compared with the extent of variation in examination scores for pupils within
schools, similarly we could compare variations in unemployment or limiting long term illness at
the individual and area levels. We will cover some of the underlying theory of multilevel
models, and use some specialist software for fitting multilevel models (MLwiN). We will also

discuss the data requirements to allow a ‘standard’ multilevel analysis to be carried out.

The ecological fallacy.

If we assume that an equation we estimate at district level also occurs at the individual level, that

is to make a cross level inference, we are not allowing for the fact that people vary within each

district. To make such a cross level inference is therefore generally not sensible. This
phenomenon is often referred to as ‘the ecological fallacy’ (‘ecological’ meaning, in this
context, the area in which each person lives and nothing to do with the field of ecology.).



Problems of ignoring population structure.

If we carry out an analysis at the individual level and do not assume any higher level grouping
or ‘clustering’ in the population we ignore the fact that, in general, clustering occurs in a
population. Consider the population of Manchester, for example: this is not randomly
distributed. Instead, there are deprived and prosperous areas and people will be clustered in
terms of their personal characteristics. If we do not recognise this in our analysis, we are
ignoring the population structure, and statistics that we calculate from analysis that ignores
population structure will often be biased. For example, we may obtain an estimate of a
parameter and its corresponding standard error. If we ignore the population structure, it is
possible we could obtain a biased estimate of the standard error and hence if we then carry out
statistical tests or construct confidence intervals using these biased standard errors the results

will be misleading.

Multilevel modelling.

Multilevel modelling techniques developed rapidly in the late 80s, when the computing methods
and resources for this modelling procedure improved dramatically. Much of the literature on
multilevel modelling from this period focuses on educational data, and explores the hierarchy of
pupils, classes, schools and sometimes also local education authorities. Measures of educational

performance, such as exam scores are usually the dependent variables in this research.

Multilevel modelling allows relationships to be simultaneously assessed at several levels.
Consider a two level example: a sample of 900 pupils in 30 schools in England. Each pupil
attends a particular school, and we regard the schools as a sample of all schools in England.
Therefore, we can generalise from the multilevel model parameter estimates about all schools in
England, and the model we are fitting allows for the hierarchical nature of the data: pupils in

schools.



Examples of multilevel relationships
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Fig. 5.1 Varying relationships between smoking and age

Fig. 5.2 Between-place heterogeneity

Fig. 5.3 Dot-plots of the higher-level distributions underlying Fig. 5.1
Fig. 5.4 Scatterplots of the higher-level distributions underlying Fig. 5.1



Some substantive multilevel examples, with the units of interest at each level
Schools. Variations in exam performance.
Level 3: school

Level 2: class

Level 1: pupils

Variations in exam score.

Areas: Variations in health

Level 3: Counties

Level 2: Districts

Level 1: people

People: Dental data

Level 2: People’s mouths

Level 1: teeth

Time as a level.

Level 2: Person

Level 1: Occasion

Multivariate.

Level 2: Pupil

Level 1: subject of exam score.



Nesting.

Level K-1 units contained in level k units.

Cross classified.

Non overlapping higher level units — school and neighbourhood at level 2, pupil at level 1.
Continuous response.

Rather like multiple regression

Binary response.

Rather like logistic regression

Data requirements.

The most common case is to have individual level data, that includes a variable the indicates the
higher level unit for each case, e.g. pupil data that includes an identifier the school that they
attended on the dataset.

Contrast this with the fixed effects idea. If we are interested in, say, 3 schools we should fit 2
dummy variables for school. Such an analysis would allow us to compare the three schools in
our sample but not to generalise the results to all schools. But this seems fair enough: we would
not want to generalise about ‘all schools’ based on an analysis of only 3 schools.

If we have a reasonable number of schools in our sample (at least 20 or more; ideally 30 more.)
and we can assume the schools in our sample are representative of all schools in our population
of interest, a multilevel approach allows us to obtain estimates which we can use to generalise
about all schools in the population. We could fit a fixed a effects model for our sample if it had

30 schools, but we would need 29 dummy variables to compare the 30 schools, so this would not

be a very easy model to fit, or to interpret.



As a rule of thumb, we should use a fixed effects analysis when we only have a small number of

higher level units, like schools.

Another way to deal with a sample of data for a number of schools would be to split the sample
into sub-groups for each school and do separate analyses, but then we are not really making full

use of the whole sample.

Multilevel analysis is therefore a very useful technique. We should be aware of the fixed effects
analysis, and what this kind of analysis enables us to do, but we should probably only use fixed

effects when we only have a few higher level units in our sample.

Software

Of course the multilevel approach does require multilevel software. This may be a specialist
package for multilevel modelling or part of a more general statistical analysis software package.
Mlwin is one such specialist package. Other specialist multilevel packages include HLM and
VARCL. Other general statistical packages that | am aware of that allow multilevel analyses are
STATA and SAS.



Section 2: Multilevel models for a continuous response.
Fixed effects.
Theory

Consider the following theory in terms of the 2-level example of 4059 pupils in 65 schools. The

dependent variable, y, is an exam score. The explanatory variable, x, is a reading test score.

Single level models:

Model 1: Pupil level model

v =B +Bx e,
Var(y;) = ¢

i is a subscript denoting the pupil. ;= 1 to 4059. e;is a (pupil level) error term.

Model 2: School level model, based district means: we can fit this by aggregating the data.

yj ::Bo +ﬂ1x.i te;
j is aschool level subscript j=1,...65

V. is the school mean exam score.
J

Xj is the school mean reading test score.

€j is the school level error term.



Multilevel models:

Model 3: 2 level ‘empty model’, or ‘variance components” model.

Called an “‘empty model’ because there are no explanatory variables.

y, = Potu, +e,;
Var(y;) = 6%+6% = 6°

i is the pupil subscript
J is the school subscript

&%, measures variation in schools.

o’ measures variation in pupils.

o’ Io® = the intra class correlation: the proportion of the overall variation in exam score
attributable to schools. i.e. how similar are exam scores within schools. Like a correlation, the
higher the value the more similarity of pupils in schools with respect to the dependent variable.
But note the intra class correlation does not really tend to have values as high as the usual
pearson correlation that is used to measure the association of two variables. Note also that

‘class’ here has nothing to do with classes in the school.
Model 4: 2 level model: pupils in schools, with an explanatory variables.

Vi =Bot Buxytu; ey

In model 4 we have added an explanatory variable but we assume that the relationship
Between the explanatory and dependent variable is the same in all schools, but that there is a

different intercept.

Model 5: random slopes



Yy = Bot Byxy g +ey

Where the ‘random slopes coefficient is:

ﬂlj =p+ Uy,

Or alternatively, but equivalently, we can write the model as:

Yy = Bo+ Buxy +ugx; +ug, e,

In model 5 we assume that the relationship between the explanatory variable and dependent
variable can be different in each school.

To estimate the parameters in the multilevel models, we use an iterative method.

For example, the default in MLwiN is the iterative generalised least squares method.

We look at the residuals to see which higher level unit (e.g. school) has an extreme intercept

and/or slope.
Group level variables

Multilevel modelling allows us to specify variables at any level, not just the individual. Hence in
the current example we could include group level variables. These can be either true group level
variables, like a variable that describes the type of school (e.g. mixed or single sex), or
contextual, which are a function of the individuals in the group, such as the proportion of pupils

in the school having free school meals. Thus a we could fit a model such as:
Vi = Bo +:B1jxij +ﬂ2Wj +ﬁ32j TUy; Te;

Where

w, indicates the type of school, and

z; is the proportion of pupils in the school that have free school meals.

These group level variables could also be fitted as random terms in a multilevel model.



Section 3: Practical session for multilevel models with a continuous response.

Note on Data — please note these data are taken from the MLwIN tutorial dataset. A further
useful discussion can be found in the MLwiN user guide (Rasbash et al 2000), which is supplied
when copies of MLwiN are purchased. Website: multilevel.ioe.ac.uk

Data.

The data are from 4059 pupils aged 16 in 65 schools. We are interested in the relationship
between exam score (NORMEXAM), the dependent variable, and reading test score
(STANDLRT), an explanatory variable. Further explanatory variables could be added to the
model, including characteristics of the pupil and/or characteristics of the school. We will use
Mlwin to carry out a multilevel analysis of these data. The following pages show helpful screen
shots of mlwin output and we will work through these. One thing | should stress about Mlwin at
the onset is that it is sensible to save the worksheet very often as the programme can become

unstable and crash unexpectedly.

MIwin

Depending on which machine you are using, either Click on the icon for ml win, or run it from

the start menu in windows. | will explain in the workshop.

You should see a grey screen. We first need to open an ml win worksheet. Format .ws files are
ml win worksheets and these are like spss .sav files in that all variable names etc are retained. In
worksheet files all the current model setting are also saved. Note that Mlwin can also read
ASCII format data (more on this later). First we open the worksheet from the FILE menu.



- M LwiN
File Edit Options Model Estimation Data Manipulation  Basic Statistics  Graphs  Window  Help

E ztimation
control_.

DOpen warkshest
Save worksheet
Save worksheet As...
ASCI text file [nput
ASCI test file olltput
Wew Macro

Open Macra

Save Macro

Save Macro az

Frint "window Image

Exit

C:\Program FileshLwil 1.1 0% utarial we
C: A IMD 0w S YD esktopimizchfinalml. ws
C:AWwWIMDOW S Desktopimlzchmldat? we
CiwINDOwWShDesktopimlschmlzar3. ws

Aset|  AESES KD B ERNLONEE RIS e T R0E

The open worksheet window comes up ( nb your screen might look slightly different to the one

below If your file is in a different directory or being read from disk).

Look jn: | = MLwiN1.10 = ﬁl

|1 discrete ¥ readingi

2 bl b o

=™ Diag1 e
2 Gosemy

2 height

= mrnrmec

File name: Itut-:urial Open

Fil=z of bype: Iwnrksheet [*.ws; * we?) j Cancel |

[~ Open as read-anly

&

NAMEs lets us see the names, number of cases and range for each variable. Categories tells us

about the categories for categorical variables.
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1 Ischuul | | |Refresh | Categories | <P Help |
Hame n missing min max =

1 BT 1050 0 1 65 =

2 student 4059 0 1 913

J normexam 4059 1] -3.666072 3.666091

4 cons 4059 1] 1 1

5 standirt 4059 0 -2.934953 3.015952

6 gender 4059 1] 0 1

7 =schgend 4059 0 1 3

8 avsirt 4059 0 07559605  DLGITES59

9 =chav 4059 1] 1 3

10 vrband 4059 1] 1 3

11 i1 1] 0 0 1]

12 c12 1] 0 0 1]

13 c13 1] 0 0 1]

14 c14 1] 0 0 1]

15 15 1] 1] 0 1]

16 c16 1] 0 0 1]

17 17 1] 0 0 1]

18 c18 1] 0 0 1]

19 c19 1] 0 0 1]

20 c20 1] 0 0 1] -

The variables we will look at this morning are:

School = school ID

Student = pupil ID

Normexam = a standardised exam score

Cons = a constant term (always takes the value 1).

Standlrt = a standardised reading test score

Gender = gender of the pupil (0=boy, 1 = girl)

Schgend = type of school (1=mixed, 2=boys only, 3=girls only).

11



goto line |17 view | P’ Help | Font

school{ 4059) [F¥ ] - |nnrmexam{ -
1)1 zﬁfﬂﬂam 2613245 o
2|1 cons 1340668
311 standirt -1.723882
4|1 pender 067586
gchgend
511 awvelit 5443409
6[ 1 schav 1.734899
7|1 viband 1.039608
81 cl2 -1290847
g1 cl13 -9393777
cl4
10( 1 15 -1.219486
111 E}g 2.408692
[ H
12(1 c18 * G107 286
13| 1 oK Cancel -1.836687
4 | | » |v
We can also view the data
goto line |17 view ? Help | Font
school{ 4059)  [student{ 4059) |[normexami [cons{ 4059) |standirt{ 4059) [gender( 4059) «
11 143 2613245 1 6190593 girl
21 145 .1340668 1 2058019 girl
31 142 1.723882 1 1364576 oy
4]1 1M1 967586 1 2058019 girl
51 138 5443409 1 3711049 girl
6] 1 155 1.734899 1 2189437 oy
7|1 158 1.039608 1 1116621 oy
81 115 - 1290847 1 103397 oy
01 117 -9393777 1 5380612 girl
10| 1 113 1.210486 1 1.447227 boy
11| 1 112 2.408692 1 2437391 boy
12| 1 137 6107286 1 2106786 boy
13| 1 134 -1.836687 1 4.049004E-02  boy
‘| | k|

12




To specify a model go to the equations option in the model menu. The default is for a normally
distributed continuous response variable.

. MLwiN - C:‘\Program Files\MLwiN1_10\tutonial ws

File Edit Options | Model Estimation  Data Manipulation  Basic Statistics  Graphs  Window Help
- More | Sto Equ E stimation
Main Effects and Interactions control..
Fredictions
Hierarchy \iewer
E gtimate tables

Trajectaries
Beszidualz
HMultivariate

Wariance function
Intervals and tests
LConsztrain Parameters
Wwieights

Subscripts

rardom| 0x fixed | 0x iteration 5
s A @ I EE S K @ M dalEadHs  [RBNSOB K S S
&4 Equations _[O] =]
¥~ N(XB, Q)

¥ = oo

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear

13



The response (the Y) variable is NORMEXAM, and we specify a two level model with schools
at level 2 and pupils at level 1.

. Y variable |
¥: Inurmeuam j
M levels : I 2. ij j
level 2(j): Is-::huul j

level 1di) : Im vI
done I

We can also view the population with the hierarchy viewer. This shows us our two level
population: 4059 pupils in 65 schools.

. MLwiN - C:\Program Files\MLwiN1_10\tutonal ws

File Edit Options | Model Estimation Data Manipulation  Basic Statistics  Graphs  Window  Help
Equationz E stimation
Main Effects and Interactions control..

Fredictions

E stimate tables
Trajectories
Besidual:
Hultivariate
Wariance function
Intervalz and tests
Lonstrain Parameters
Weights

Subszcripts

ratdomn| 0% fixed | 0% iteration 2

Hstat| | 4 E SRS K D &l dal®m s | REBNGOE WS S0 175

14



=% Hierarchy viewer M=
—Summary @

el range |tn1a|

schoal (j) [1.65 (65 e — |? HE.pl

stuclent (1] [1.. 195 ;4029

—Details

M1 73

M1 &0

M1 B2

M1 &8

M1 73

M1 75

M1 43

M1 70

LZID: 1,j= 1of 65

L2ID: B,j= 6of 65

L2ID: 11,j= 11af BS

LZID: 16,j= 16af BS

L2I: 2,j= 21 0f 65

LZID: 26,j= 26af BS

LZID: 3,j= 31af B5

L2ID: 36,j= 35af B5

LZID: 2,j= 2of 65
M1 55

L2ID: 7,j= 7 of 65
M1 88

L2ID: 12,j= 12af BS
M1 47

LZID: 17,j= 17 of BS
M1 126

L2 22,j= 220f 65
M1 a0

L2ID: 27,j= 27 af BS
M1 38

LZID: 32,j= 32af BS
M1 42

L2ID: 37,j= 37 af B5
M1 22

LZID: 3,j= 3of 65
M1 52

L2ID: §,j= 8of 65
M1 102

L2ID: 13,j= 13af BS
M1 B4

L2ID: 18,j= 18af BS
B 120

L2 23,j= 23of 65
Mi 25

L2ID: 28,j= 25 af B5
M1 57

LZID: 33,j= 33af B5
M 7T

L2ID: 38,j= 358af B5
i 54

LZID: 4,j= 40f 65
M1 79

LZID: 9,j= 9ot B5
M 34

L2ID: 14,j= 14 af BS
M1 198

L2ID: 19,j= 19af BS
M1 55

L2 24,j= 24 of 65
Mi AT

L2ID: 29,j= 29 af BS
M1 79

LZID: 34,j= 34af B5
M1 26

L2I0: 39,j= 39af B5
M1 45

LZID: 5,j= Sof 65
M1 35

LZID: 10,j= 10af BS
M1 50

L2ID: 15,j= 15af BS
(ST

L2I: 20,j= 20af BS
i 39

L2 25,j= 250f 65
Mi 73

L2ID: 30,j= 30af B5
M1 42

LZID: 35,j= 35af B5
M1 38

L2IC: 40,j= 40af BS
M1 7

For the x variable, we begin with the most basic variable. A constant (CONS). This allows us to
assess the extent of variation in NORMEXAM at the pupil and school levels. This is model 3 on
page 11 as specified in the theory section above and you can see the equations below. Click on
the estimates button to make the full model appear in your equations window. Items in blue are
to be estimated via an iterative process. When these estimates converge as the procedure iterates
they turn green. We can see the values by clicking on the estimates button again. The NAME
and SUBS buttons are also useful for seeing the names of variables and subscripts on the output.
' X varioble |

[none] vI
school

student
iﬁm_

NOTINEe XA
[schgend hd

15



im. X vanable |

CONS -

Fixed Parameter

delete Term

Done

J”ij - ,Blilz'f 0

,IGEI:} = ﬁn + 0 +z 0
o] “NO-20 7 2" o]

[E;_. DJ}: ~N(0, Q) : Q,= [Gin]

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear
% E quations O] x|
NOrMeXam, ... .o ;™ N{XE, Q) =

NOTMEXAM, y, st sohool — [Hstudent school©ONS

ﬁﬂsmdenf, schionl - ﬁ[l + M’El.schooi Te Qsfudent. school

[M Dschooi] ~NO Q) 0,7 [Gi n:l

[‘5’ Ostudent, .schooi] ~N0, Q) Q.= [Gin]

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear

16



2k Equations M=l E3
normexam,, ~ N{XE, )
normexam,, = f;,CONSs

By =-0.001(0.131) +2y, +ey,

1] N Q) Q= [0.000(0.000)]

[eq,] ~NO Q)+ Q= T0.000(0.000)]

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear

17



Now click on START in the top left of the main Mlwin window to make the model estimation

process begin.
% E quations O] x|

normexam, ~ N{XE, )
normexam,; = (3 conNs
Bo; =-0.013(0.054) + 10 +eg,
~N(0, Q) : @, =
1] =0 Q) = = [0.169(0.032)]
[eq,] ~N© Q)+ Q.= [o0.848(0.019)]

-2¥aglikelihood(IGLE) = 11010.650{4059 of 4039 cases in use)

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear

** NB save the worksheet before continuing! **

In the equations window above, the green, converged, estimates are shown after a few iterations,
and we can see that the school level variance component is 0.169 and the pupil level estimate is
0.848. Hence the intra school correlation is 0.169 / (0.169+0.848) = 0.166. This suggests that
around 16.6% of the variation in NORM exam is at the school level and the remaining variation
is at the pupil level. However, so far we have not allowed for any explanatory variables. Let’s
try adding one in now to fit a multilevel model with random intercepts (like Model 4 in the
theory section above on p11.). To do this click the add term button.

We will add in STANDLRT as an explanatory variable as shown below.

18



% E quations O] x|
i = Pogto T 17

Fontz | Subsz | Hame | + | - | Add e | Estimates | Honlingar ?Help Clear

im. X vanable |

oo

Fixed Parameter
[] jischool)
[] itstudent)

delete Term
Done

Click on ‘MORE’ or ‘START’ in the top left corner of the mlwin screen. Start starts the

estimation from scratch. MORE continues the estimation based on the values of those already
estimated in the previous model and may be quicker to get to the answer when you have a huge
dataset. Note also when you do have a huge dataset you can increase the size of the mlwin

worksheet via the options menu.

When we fit the model with the explanatory variable we get the following results.

19



% E quations O] x|

¥y = Bogo T 0.563(0.012)x
Boy = 0.002{0.040) + My ¥ ey
[ug] =N Q)+ 2= [0.092(0.018)]

[eq,] N Q)+ Q.= [o.566(0.013)]

-2¥aglikelihood(IGLE) = 9357.242(4059 of 4039 cases in use) =

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear

These results imply:
e a positive association between NORMEXAM and STANDLRT. A statistically
significant coefficient (the estimated coefficient is more than twice its standard error).

e conditional on knowing the STANDLRT score of the pupils, a school level variance
component of 0.092 (smaller than before)

e conditional on knowing the STANDLRT score of the pupils, a pupil level variance
component of 0.566 (smaller than before)

e conditional on knowing the STANDLRT score of the pupils, an intra school correlation

of 0.139 — we have explained some of the between school variation by including standlrt
as an explanatory variable.

Save these results as a worksheet called int.ws

20



What about random slopes? Let’s try fitting a model like (3) in the theory section above.
% variable___I3|

standlrt -
Fixed Parameter

[] isiudent)

delete Term \
Done
2% Equations = E3
¥y~ N(XB, Q) —
Yy = Bofo T By
oy =-0.012(0.040) +y +e
By, =0.557(0.020) +u

_MDJ] “NO, Q) : O [0_090(0.018) ]

iy, 0.018(0.007) 0.015(0.004)

2,,] ~NO Q) Q= [o.550(0.012)]

7

-2¥aslikelihood(IGLS) = 9316.870(4059 of 4059 cases in use) -
Clear |

‘ Fonts | Subs | Mame ‘ + | - ‘Add lerm‘gstimates‘ Hunlinearl?Help

We see that we have now fitted quite a complicated model and all the results are statistically
significant. The positive covariance of 0.018 between intercept and slope means that schools
with steep slopes have high intercepts and schools with shallower slopes have lower intercepts.

Save these results in a worksheet called slope.ws
Graphs
What do all these estimated models look like as graphs? We can look at them via the graphs

menu. First we will plot the data. Dependent variable vs explanatory variable. We see a general

positive association between the two variables for all 4059 pupils.
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¥ Customized graph : display 1. data set 1
D1 ~ || Apply | Labels | Del data zet | P Help | [ autosort on x
de it |¥ by a |- Detailz for for data zet number [dsit] 1
1 OIMEXS and |V plot what?]| plot style | position | emor bars|  other
2
3 ¥ Inurmexam "I i Istandlrt "I
4
5 filter [none] - group [none] -
[
7 plot type [point =]
L]
9
10
11 -
4| | 3
normexam

dY—0

29—+

2.0+

0o |---

standlrt

Predicted values. For those models that include an explanatory variable we will now produce
plots of the predicted values. First the random intercepts model. We must begin by obtaining the
predicted values for this model which. First re-open the worksheet with the results of this model

for random intercepts (int.ws ). Next go to the model menu and choose “predictions’.
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wh predictions _ O] x|

|J” = Ao T ATy

variable Xq X1y

fixed Bo B

level 2 My

level 1

4| | >
Fonts | Mame | Calc ? Help| Output from prediction to I.:11 -
1.0 S.E.of I[nnne] 3 output to I j

now go to the names window and name C11 = PRED1

¥ Customized graph : display 1. data set 1

D1 ~ || Apply | Labels | Del data set | P Help | [ autosort on x

ds #f |¥ b « |- Details for for data set number [dz#f] 1

1 pred C |V plot what?] plot style | position | eror bars|  other
2

3 ¥ Ipred1 - I L Istandlrt - I
4

5 filter [none] - group Is-::huul - I
6

7 plot type Iline vI

8

9

10

11 -

4| | *
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predl

23T

-3.4 -26 7 -0 0.0 na 17 18 3 standlrt

Now open the slope.ws worksheet and we can see the graph of the predicted values for the
random slopes model. Calculate the predictions as pred2
&% predictions _ O =]

|§ Zﬁnﬁn +;§1ﬁ 1ij

variable Xq X 1y

fixed Bo B

level 2 My Uy

level 1

1| r
Fonts | Mame | Calc ? Help| output from prediction to |c12 =

1.0 | S.E.of | ~]  outputto | =]

then plot them. Against the x variable (STANDLRT)
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pred2

281

21T

21 | | | ’ | | | |
-3.4 -28 -1.7 -0.9 n.o 0.a 1.7 2.6 3.4
standlrt
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Which line is which? Click on the top line, with the steepest slope.

&k Graph oplions |
Identify point Titles Scale

clicked point [-5. 732473, 3.3226E)
nearest data paoint = [-2.3563593,- 5034393, item number

37E. in columnz [ztandlt,pred?]

— kultilexel Filtering
level 2 schoal, idocode= 7. (= ?

level 1 student, idocode = 136,

— |n araphs [ model

Leave out

Include
Abzarh inta durnmy LI

Leave out

FReszet all
highightlstele 11 =]

Apply | Setstles | Apply |

? |.|.E|p| Click on a point on a graph

We can see that this line is for school 7.
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Residuals — based on int.ws worksheet.

It is of interest to obtain the residual values from the estimated multilevel model. These tell us
which schools have intercepts higher than the overall intercept for all 4059 pupils and which

have lower. Plots are a good way to examine the residuals so we will produce some plots here.

[NOTE: change SD (comparative) to 1.4 (see paper by Goldstein and Healy, Journal of the
Royal Statistical Society (A), 158, Part 1, 1995) for more details on comparing means of several

groups in multilevel populations). Calculate the residuals at the school level.]

=% Residuals _ O]
Settings | Plots ]

— Dutput Calurns

start output at |3EIEI Set columnz I

reziduals to ||:3|:||:|

|1 4 SD[zomparative] of regidual to ||:3|:|-|
standardised|diaghostic) residuals to ||:3|:|2

v narmal scares of residuals to ||:3|:|3

W normal seores of stndardised residuals ||:3|:|4

M ranks of residuals to ||:3|:|5
¥ deletion residuals [l
v leviage values |I:3EI?
¥ Influence values |I:3EIE=

[T Ealzulate weighted residials

leevel I 2 school "’I LCalc | ?Help

In multilevel modelling, we are assuming that the school level variations are based on a
distribution. We can assess whether it is reasonable to assume that this distribution is normal via
a normal probability plot. The more normal the distribution, the more diagonal the line.
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a% Residuals _ O]
S ettings | Plots I
— zingle

= residual ® rank

= residual +4-1.4 3d & rank

If='Istanu:lar-:liseu:l residual vI % homal scores

f‘lstandardised rezidual j W Ifi:-:ed part prediction j

— painize

" residuals

= standardized residuals

" leverage

= deletion residuals

" influence

— diagnostics by varnable

[ Il:l:nns j

Ouput to graph Digplay number
( |D 10

[

zelect subset

Apply P Help

std( cons)

nscore

Next we can produce a plot the ranks the school residuals and plots then with “error bars” which

enable schools to be compared. The schools whose error bars do not overlap can be said to be
statistically significantly different at the 5% significance level. The length of the error bar

interval is influenced by the number of pupils in the school on the dataset. Wider intervals occur
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for schools with few pupils (in the sample) and narrower intervals for schools with more pupils
(in the sample).

ok Residuals _ O] x|
S ettings | Plotz I
— zingle

(" |standardised residual | # nomal scores

= regidual ¥ rank

i regidual +4-1.4 2d » rank

Flstandardised rezidual j b Ifi:-:eu:l part prediction j

— palnwize
= residuals = leverage = influence

" standardized residualz ¢ deletion residuals

¢ |cons j ID 1M j
select zubset Apply h Help

— diagnostics by vanable—— "Duput to graph Dizplay number

11—

] W E

cons

s - e -- Thi4- ! Fidede e
V 1L -

1 17 33 49 fi4

rank

We can also see the residuals by viewing the appropriate columns of the worksheet. 65 residuals
are calculated, one for each school. We see from the data that school 1 has a residual of .37376,
ranked 57" largest of all residuals.
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ak Data M= E3
goto line |1 view | ?Help | Font |
c300( 65) [c301( 65) [c302( 65) [c303( 65) [c304( 65) [c305( 65) [c306(65) ]

1|.3737603 .1291953 1.202588 1.122762 1.122762 57 1.200525
2|.5020431 1439432 1.757973 1.37468 1.37468 60 1.787886
3|.5038884 147152 1.769612 1.608652 1.481544 62 180033 —
4/ 1.813108E-02 | .1254183 6.252016E-02 1548709 1548709 37 6.203169E-1
5|.2404306 1709869 8652674 9271548 1.053073 54 8635467
6|.5413054 1252812 1.866662 1.093083 1.768825 64 1.904594
7|.3790009 1205062 1.30212 1.19838 1.19838 58 1.300368
8|-.0261734 1142201 -8.952616E02  -3.857308E-02  -3.857308E-02 |32 -8.882955E
9]-.1351811 1720852 -.4876014 -4377001 -4377001 22 -.4846781
10/-.3370208 149172 -1.185823 -1.19838 -1.19838 8 -1.189664
11|.1793004 377743 6244500 6624352 6624352 49 6214582
12|-6.186281E-02 1527144 -.2184061 -.2733004 -.2334853 26 -.2167738
131496475 1357429 -5202923 -5244005 -5244005 20

-5173067
2 I
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Section 4: Multilevel models for a binary response variable.
Introduction

This section is concerned with multilevel models that have a binary response. In many situations
the response variable is not continuous but is instead ‘binary’ (or sometimes called
‘dichotomous’ or a ‘0/1 variable’). For example, we might be interested in whether or not a
person is unemployed and would have a response variable coded 1=unemployed, O=not
unemployed. Similarly we could be interested in whether or not a person has limiting long term
illness, and variations in long term illness by “place’. We might be interested in the comparative
role of place specific and personal characteristics in explaining the propensity to be unemployed.
For example, unemployment may be associated with a person’s own characteristics and (or) by

the characteristics of the place in which they live.

The example we will consider in this section is concerned with variations in unemployment for
economically active individuals aged 18 and over in the North West of England. We will first
describe the dataset and models and then try out an example using MIwiN.

The models

Model 6:

The basic (two level) multilevel model for a binary response is written as follows.

Define

Vi =Py t€  (63)

where y; takes the value O or 1 for each individual i in group j (O=not unemployed,
1=employed), p; is the predicted probability for individual i in area j. e; is an individual level

error.

and
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Logit(p,) = B, + Bx, + Box, +.o+ Bx, +u, (6b)

Where gy is the ‘intercept’ and, f; to f, are the coefficients of the p explanatory variables
(which may be continuous or dummy variables). «; is the level 2 error term. Important: because
the part of the model shown by equation (6a) is for a binary response variable there is no level 1
error term. This has been specified in equation (6b). Note that the model could be extended to
include more levels by including error terms at all levels above the individuals. The model
shown above is of the form of a ‘random intercepts model’ that we saw this morning. Model ()
could be extended to include random coefficients for the explanatory variables, and could

therefore be of the form of a ‘random slopes’ model.
The data

The dataset is derived from the 1991 individual Sample of Anonymised Records (the actual data
is cut down version of the SAR to make it practical to use in the practical sessions). The
population is all individuals living in the North west of England. As well as containing a unique
identifier of the individual, these data also contain an identifier of the SAR area (typically one
local authority) in which the individual lives. Hence the data allow us to fit a 2 level multilevel
logistic regression model. A full list of the variables that are included on the dataset, with details
of codings, is given in Appendix 1. The variables we are going to focus on now are a subset of
those available on the worksheet. The worksheet has a more comprehensive set of variables to

enable you to try out further modelling of the data if time permits.

Special variables for multilevel logistic regession.

Note that Mlwin always requires that we have the following variables in our worksheet
CONS - constant term

BCONS - a second constant term
DENOM - a denominator
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If you look back at the model for multilevel logistic regression, you can see that the model is not
like the multilevel model for a normal response. Instead of directly modelling the y variable, as
we did for a continuous response, in multilevel logistic regression, we first re-write the response
variable as a predicted probability and an error term (the individual level error) and then we

model the predicted probability

Hence we write down a multilevel model that contains error terms for all levels above the
individual, but not the individual level, and allow for the individual term separately through the
bcons variable. The cons term is used to allow for the errors above the individual level. Hence

both cons and bcons are used in the model.

The other variable we need is called ‘DENOM’ meaning denominator. Some of you will have
done logistic regression before and will know that these models can be used to model table data
where one of the variables is a response. Hence we can write exactly the same data as

A) alist

sex 1t

T == = N
O B kB O Fr O Kk Kk O

b) a table

Sex=male (0) Sex=female (1) Row total
LIti=no (0) 2 2 4
LIti =yes (1) 2 3 5
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Column Total 4 5 9

For the list data DENOM is always 1 because we are looking at each person and at a time and
we have a variable whether or not they have limiting long term illness, we also record their sex
as 0 =male, 1=female. For the table data we take all the males and see how many of them have
[Iti, hence for the table data, for males the denom is 4 and for females the denom is 5. Both
forms of data can be modelled in mlwin. List data has greater flexibility but takes up more space
than table data. Table data has less flexibility but takes up less space than list data. In this
practical we will use list data as it is easier to explain the methods for this practical and it makes
the dataset more flexible As we are using list data here, denom is always = 1.

If all of this is a little confusing, the good news is that we always use these variables in Mlwin
for logistic multilevel modelling and the denominator must always be called DENOM. So it is
sufficient to simply include them on your M|LwiN worksheet and not get too involved in the

technicalities!
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Section 5: Mlwin — begin by opening the worksheet binary.ws

@ MLwiN =] x]
File Edit Options Model Estimation Data Manipulation Basic Statistics Graphs Window Help

E stimation
control.

Open worksheet
Save worksheet
Save worksheet fs
ASCI test file Input
ASCI text file olltput
Mew Macro

Open Macro

Save Macio

Save Macro as

Frint *#indow Image

Exit

C:Ww N D OwWSSDesktopimlzard ws
CAWIMDOWSSDesk topimidats. ws
C:\Program FilezhhLwit 1.1 0% utorial we

#sart| | A @ SIER S K @ || EJpoe | GyEwl | Ao |[TuL.. [|RBNE O SBE S 1557

Laak i Ia milzc ﬂ El

2 afternoon ™ unem
2= At ¥ unem?
2 firalrnl

B midat?

= mlzard

File name: Ibinar_l,l Dpen I
Files of type: Iwnrksheet (=g = ws?) j Cancel |

[~ Open as read-only

2

If you go to the equations window, you see that the default equation comes up.
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% E quations O] x|
¥~ NXB, Q)
¥ = oo

Fontz | Subsz | Hame | + | - | Add Term | Estimates | Honlinear ?Help Clear

Specify unemployment as the y variable with areap (SAR areas) at level 2 and individuals at

level 1.
i, Y variable |
¥: Im 7|
H levels : I 2-ij j
level 2(j): Iareap j
levell: [individual — ~|
__done_ |

Choose the binomial distribution by clicking on the ‘normal” N and changing it. Binomial is

used for logistic regression.

=% E quations N [=]
v ~ Binomial(z, z)

_ Binomial
Y= Poizzon

. -ve Binomial
logit{ z} = ANomal

Clear |

‘ Fonts | Subs | Hame | + | - |Add lelm|£stimates| Nunlinearl?Help
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Specify CONS and BCONS as x variables as follows.
< X variable 3| =X variable |
[ v || cons -

[] Fixed Parameter Fized Parameter
[ jtareap) jtareap}

iindividual) [] iindividual)

delete Term delete Term

Done Done

The default nonlinear options are then chosen by clicking on the nonlinear button and clicking
on ‘use defaults’.

isi. Monlinear E stimation A=k

— Diztributional azzumptions

(® Binomial (") extra Binomial
— Linearization
(® 12t arder (") 2nd Order

— E stimation type

@ MOL CIPAL
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We begin by fitting a variance components model. Note that it is much much harder to calculate
intra class correlations for a binary response multilevel model. For a discussion of methods see
Goldstein, Brown and Rasbash (2000).

2k Equations =] 2

unem,, ~ Binomial{denom,, 7 )

unemy; = g, +e Dl.j.bcons* }

logit( m}.} = f3,cons

By = -2.155{0.091) + Ky

[14,] ~N(©0, Q) Q,= [0.183(0.064)]
beons = beons[ g1 =)/ denomlj]n'j

e, = @ ) 27 [1.000(0.000)]

Fontz | Subz | Mame | + | - | Add Term | Estimates | Honlinear ?Help Clear

Next we add in an age explanatory variable
% E quations O] x|
unem, ~ Binomial(denom,, ) }
unemy; = g, +e Dl.j.bcons*
logit(;‘;}.} = fcons + -[].[]27([].[][]4}3513:!}.
By = -1.206{0.153) + Ky

[14,] ~NO, Q) Q,= [0.169(0.060) ]
beons = beons[ g1 =)/ denomlj]n'j

e, = @ ) 27 [1.000(0.000)]

Fontz | Subz | Mame | + | - | Add Term | Estimates | Honlinear ?Help Clear
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We can obtain predicted probabilities from this model — save them as PRED3

&% predictions M=
|lﬂgit(f} = ﬁlj.cons +ﬁjage!}.

variable cons age,,
fixed B 8

level 2 My

level 1

1| | G
Fonts | Name | Calc | 2 Help] 0Utpul from prediction to | =]

1.0  S.E.of | =] output to =

Now plot the predicted value by age for each model using the graph options.

ol Customised graph : display 1. data set 1

? Help

¥ autosort on x

D1 = | Apply | Labelz | Del data zet
de # ¥ =

1 = aqe

2

3 ¥

4

L filter

b

Fi plot type
L]

b

10

11 -

af | 4

4 |- Detailz for for data zet number [dz#t] 1
|V plaot what?T plot ztyle T poszition T ernor harsT

other

]

pred3 - X Iage - I
Iareap - I

[none] - qroup

line

J

We see a negative relationship between logit (unemployed) and age.
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logit (unem)

Predicted logit unem by age

age
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We could also fit a random slopes model.

guatic =1E1X
unem, ~ Binomial{denom,;, 7) } B
unem, = g+ e D!.j.bcons*

logit( J’Ej} = f3ycons + 3, Lage,
By = -1.206{0.153) + Uy
Big = -0.027(0.004) + 2,

wy | -G, @) ¢ = |0173(0.174)
g 0.000(0.004) 0.000(0.000)

beons = bcons[ gl - dntan-::-ngj.]t"j

e = @ ) 27 [1.0000.000)]

Fontz | Subz | Mame | + | - | Add Term | Estimates | Honlinear ?Help Clear

The slope terms are not statistically significant.

We will now add some more explanatory variables to the model. A quick way to do this is via
the estimate tables window, first choose this from the model menu and then click on the
plus/minus button.

=k E stimates M=l E3
SESPLH
[FIXED PART & geErre PHes |
cons age
B, B
-1.248 -0.027
(0.151) (0.004)
g O 02E
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The current variables in the model are indicated with a cross.

[

" for Fixed Part

areap -
¥ age —
Iill
qualnum
e
cars
dens=sity
indiwidual
gbprofil
¥ cons
bcons

-

We can add in some dummy variables for the 10 ethnic groups. We need 9 dummy variables.

Vorisbles |

" for Fixed Part

denam -
white

blac ko

blac kaf

blac kath
indian
pakistani
banglad
chinese
othieras
other al

2o e omel e om e oE o

When we run the model we can compare the ethnic groups. ‘white’ is the baseline ethnic group.
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% E quations =] 2

unem,; ~ Binomiﬂ(dennm}., ?E;;'} } =

unemy; = g, +e Dl.j.bcons*

logit(;‘;}.} = f3cons + -[].[]26([].[][]4}35131}. + D.241(1.28ﬂ}blackai:}. +
-0.739(0.844)blackc, +-0.698(1.236)blackoth, +
0.479(0.372)indian,, + 0.510(0.429)pakistani,, +
2.254(ﬂ.836}banglad!} + -D.STG(I.llﬁ}chinese!}. +
0.263(1.131)otheras, + 0.813(0.617)other,

By =-1.223(0.154) + 1,

[14,] ~N(©O, @) : Q.= [0.1710.060)]

beons = bcons[ gl - dntan-::-ngj.]t"j

Fontz | Subz | Mame | + | - | Add Term | Estimates | Honlinear ?Help Clear

Note that we can choose more sophisticated estimation procedures for the model via the
nonlinear options window. These often give results very similar to the default, but in some
circumstances PQL estimation may be preferable to MQL and it is useful to see that different

kinds of estimation are available.

i, Nonhnear Eztimation M= E3
— Diztributional azzumptions

(® Binomial (") extra Binomial
— Linearization

i 12t arder (® Znd Order
— E stimation type

O MaL ® POL

Lze Defaults | Done |
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Residuals.

We can calculate and plot residuals for the model with no explanatory variables to see the extent
of variation in unemployment in areas of the North West.
% E quations =] 2
unem,, ~ Binomial{denom,, 7 ) }
unemy; = g, +e Dl.j.bcons*
logit( m}.} = f3,cons
By = -2.155{0.091) + Ky

[14,] ~N(©0, Q) Q,= [0.183(0.064)]
beons = beons[ g1 =)/ denomlj]n'j

e, = @ ) 27 [1.000(0.000)]

Fontz | Subz | Mame | + | - | Add Term | Estimates | Honlinear ?Help Clear

We calculate the residuals as before (but note: these residuals are on the logit scale).
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u# R esiduals

[Ealzl ate e hten TesmiEs

u# B esziduals

Cztandardised residual
»

o
(" |ztandardized residual fimed part prediction
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13—

1.0+

%
s

o s e W N e B e

cons

03

-0.64k

0

13 ' | | :

rank

When we compare the groups we find that the areas with two the highest residuals (highest
levels of unemployment) are Liverpool, Manchester, And the two lowest residuals are for Ribble
valley and Macclesfield.
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If we fit a more sophisticated model, which includes details of ethnic group, housing tenure and
age we can again calculate and plot the residuals from this model.

=% Equations =il
unem,, ~ Binomia](denoml.j, j‘g:}-) } B
unem, = 7. +& D!.J,.bcons*

logit(fgj) = 3 cons + -D.DZI{U.UDél}ageU + -D.963(U.796)blackcu. +
-0.063(1.227)blackaf, +-1.057(1.175blackoth,, +0.921(0.374)indian, +
0.777(0.432 )pakistani, +2.378(0.843 )banglad; +-0.730(1.114 )chinese,, +
U.U46(1.172}0ﬂ1eras!j + 0.659(0.637}0ther!]. +1.207(0.167)rent privl.j +
1.798(0.106)rent la!.j +1.226(0.193 )rent other!.j —

8y =-1.920(0.156) + 1,

[14,] ~NO, Q) ¢ Q.= [0.099(0.042)]

beons = bcons[ j-ll—}.(l - ﬂ—ij)f d‘emmnq.]'l5

-
4| | 3

| Fonts ‘ Subs | ﬂamel + | - |Add lerm‘ leimales| Nunlineall?Help Clear |

12—

0.9—

!

0.0 f---- R Bt R e e e B T e e R N 3 T i it 1o et Rt B ST SRR T

cons
I
I
——

-0.3+

-0.6—1

-0.9 I | | |
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We see that the two highest residuals are still Liverpool and Manchester, and the lowest two
residuals are Ribble valley and Warrington. However, notice that the range of the residuals has
reduced, compared with the model with no explanatory variables. Hence we have explained

some of the variation by including information on age, ethnic group and housing.

Section 6: further topics.

ASCII data.

Data should be in the following format for use with ml win. We can save it as tab delimited ascii
data. E.g is spss tab delimited ascii. If possible sort the data by area (or whatever the groups are)
prior to inputting to mlwin; but note you can sort data in mlwin if necessary). We can read in
fixed format data, or as data in columns (as shown below). Data in columns is easiest read in and
the procedure will be described here. For more details of reading in data see the Mlwin User

guide.

Format of data: assume this is c:\data\ascii.dat

Area person blood pressure age
1 1 100 34
1 2 120 45
1 3 150 60
1 4 107 31
1 5 125 37
1 6 144 58
2 1 102 33
2 2 99 21
2 3 102 45
2 4 101 36
2 5 123 72
2 6 112 56
2 7 101 55
2 8 102 24

We would read this data by going to the file menu and choosing ascii text file input and

then specifying that we have 4 columns of data as follows:
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R ASCII text file input ==

Columnz : {c1-cd

File : c:hdatatasciidat Browse | [~ Formatted

ok, | ?Help |

Suggested Reading list

Hox, JJ (1994) Applied multilevel analysis Amsterdam TT-Publikaties.

Kreft, I and De Leeuw, J (1998) Introducing multilevel modelling. London. Sage publications.

* Snijders and Bosker (1999) Multilevel analysis: an introduction to basic and advanced
multilevel modelling. Sage. [a good all round book at a reasonable price]

* Plewis, | (1997) Statistics in Education. Edward Arnold.

* Dale, A, Fieldhouse, E and Holdsworth, C. (2000) Analysing Census Microdata. Edward
Arnold: London. [Includes section on multilevel modelling and general statistical analysis + a

good reference for the SAR microdata]

note * are also on the Advanced Data analysis reading list for the msc in social research methods

and statistics run at Manchester University.

More technical references
Goldstein H. (1995) multilevel statistical model, Edward Arnold, London. In electronic form at

www.arnoldpublishers.com/support/goldstein.htm [a technical book, very comprehensive]

Goldstein H, Browne W and Rasbash J (2000) “Extensions to the intra-unit Correlation
Coefficient to Complex Generalised Linear Multilevel Models.
http://multilevel.ioe.ac.uk/team/materials/icccglmm.pdf
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Websites:

http://multilevel.ioe.ac.uk

Includes details of current developments and publications in multilevel modelling.

Other examples of work with multilevel models. www.ioe.ac.uk/multilevel/publications

These notes are by Mark Tranmer, 2004.

50


http://www.ioe.ac.uk/multilevel/publications

Assignment - FOR 5 CREDITS

(nb: people doing Advanced Data Analysis by Short Course do not need to do this

assignment.)

1. Briefly describe a multilevel population indicating the units of interest at each level.

2. Write down a (two level) multilevel model for a response (i.e dependent) variable of

interest that is:
Q) a continuous variable — random intercepts model
(i) a continuous variable — random slopes model

(iii))  abinary variable

. The following results were obtained when a variance components model was fitted in
MLwiN The population has two levels, with individuals, indexed by i, living in areas,
indexed by j, for a variable with a continuous response. Write down the variance

components estimates for the individual level and the area level. Calculate and interpret

the intra-area correlation.

v, ~ N(XB, )

Vi = ﬂijo
Bo; = 0.653(0.069) +uy; + ey,

[, ]~ N(0,@,): @, =[0.133(0.029)]

le., ]~ N(©0,2,): @, =[0.705(0.018)]

Hand in all work to Margaret Martin, Room NG22 Dover Street Building ground floor.

Tel 0161 275 4589 email margaret.martin@man.ac.uk

Assignment deadlines: for those people taking the assessed part of the course, for credits.
The deadline is Friday March 26™ 2004.
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Appendix 1: details of binary.ws variables

Name Details

AREAP SAR AREA

AGE AGE OF INDIVIDUAL

LTILL LIMITING LONG TERM ILLNESS: 0=NO 1=YES
SEX SEX OF INDIVIDUAL 0=MALE, 1=FEMALE
DENSITY MORE THAN 1 PERSON PER ROOM 0=NO 1=YES
INDIVIDUAL INDIVIDUAL ID

CONS CONSTANT TERM

BCONS CONSTANT TERM

UKBORN BORN UK 0=NO 1=YES

UNEM UNEMPLOYED 0=NO 1=YES

C-HEAT CENTRAL HEATING IN HOME 0=NO, 1=YES
DENOM DENOMINATOR VARIABLE (ALWAYS=1 HERE)
WHITE WHITE ETHNIC GROUP 0=NO 1=YES

BLACKC BLACK CARIBBEAN 0=NO, 1=YES

BLACKAF BLACK AFRICAN 0=NO, 1=YES

BLACKOTH BLACK OTHER 0=NO, 1=YES

INDIAN INDIAN 0=NO, 1=YES

PAKISTANI PAKISTANI 0=NO, 1=YES

BANGLAD BANGLADESHI 0=NO, 1=YES

CHINESE CHINESE 0=NO, 1=YES

OTHERAS OTHER ASIAN 0=NO, 1=YES

OTHER OTHER ETHNIC GROUP 0=NO, 1=YES
DETACHED LIVES IN DETACHED HOUSE 0=NO, 1=YES
SEMI LIVES IN SEMI DETACHED HOUSE 0=NO, 1=YES
TERRACED LIVES IN TERRACED HOUSE 0=NO, 1=YES
FLAT/FLATLET LIVES IN FLATFLATLET 0=NO, 1=YES
OTHERHTYPE 0=YES 1=NO

6]0) OWNER OCCUPIER O=NO, 1=YES

RENT PRIV RENT PRIVATELY 0=NO, 1=YES

RENT LA RENT FROM LOCAL AUTHORITY 0=NO, 1=YES
RENT OTHER RENT FROM SOMEWHERE ELSE 0=NO, 1=YES
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