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Executive Summary:    

• The key difference between an accelerated longitudinal design and the   single cohort study is 
that an accelerated longitudinal design incorporates multiple cohort groups at the onset of the 
study, enabling the duration of the study to be shortened.  This investigation focuses on aspects 
of an accelerated longitudinal design compared to a single cohort design, particularly for 
following babies, children and youth into adulthood. We provide a comprehensive literature 
review and investigate aspects of the designs through a theoretical assessment and simulation 
study.    

• The theoretical assessment of the precision of basic longitudinal analyses under single, 2-cohort 
and 3-cohort designs shows that sample sizes can be compromised especially at the extreme ages 
of the cohorts.  This problem can be addressed by refreshment samples that not only ensure 
representativity but also compensate for left- censored data.    

• The simulation study shows that the accelerated longitudinal designs permit analysis across a 
wider age span for a given duration of the study. The precision of parameter estimation for a 
multilevel growth curve model is similar for the alternative designs. If cohort effects are present 
in the study, it is important to include cohort main effects and their interactions in the model.  
For small sub-groups, the level of precision can be compromised due to small sample sizes.    

• The overall conclusion of this investigation regarding the suitability of an accelerated longitudinal 
design for the future of longitudinal study in the UK is positive. We recognize, nevertheless, that, 
in coming to a decision about the longitudinal design, careful consideration is needed of the 
different types of analysis undertaken by substantive researchers and their additional 
complexities under an accelerated longitudinal design. In addition, it may be important to 
consider other aspects of survey methodology impacted by an accelerated longitudinal design 
when coming to a decision, but these are outside the scope of this report.   

• From the review of international surveys of children and young people, it is clear that   multiple 
cohort designs have   been successfully implemented in different countries and the UK can learn 
from such experiences whilst considering specific needs, for example, boosting the 2016 ‘missed’ 
cohort  from the cancelled Life Style Study.   
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1. Introduction  

The 2017 Longitudinal Studies Strategic Review by Davis-Kean, Chambers, Davidson, Kleinert, Ren 
and Tang (2018) made a series of recommendations  on innovative ways to enhance and to invest in   
opportunities for longitudinal research in the UK. Since the discontinuity of Life Study in 2016 for 
various reasons, which was originally intended to collect data from over 80,000 babies born during 
2014-2018, nationally-representative data on children born after 2000/2001 are currently 
unavailable. Whilst there is longitudinal data  available from current and ongoing cohort studies and 
other longitudinal data collected, for example  Understanding Society  (including youth data for 10-
15-year-olds) and the English Longitudinal Study of Aging, the  lack of UK-level longitudinal data for 
youngest generations’ childhood and youth years is concerning and needs urgent action.  For this 
reason we focus our attention in this report to the early years.   

The challenges in designing a new large scale longitudinal birth cohort study are obtaining an 
optimal balance between analytic benefits and deciding the most cost-efficient way of conducting 
such a study, in particular, controlling the duration of the study.  One of the key recommendations 
to the ESRC was to commission a new birth cohort with an alternative approach based on an 
accelerated longitudinal design (Davis-Kean, et al.  2018, page 7). The key difference between an 
accelerated longitudinal design and the usual single cohort study is that an accelerated design 
incorporates multiple cohort groups at the outset of the study, enabling the duration of the study to 
be shortened.    

In this report, we provide a literature review and investigate theoretical and quantitative aspects of 
an accelerated longitudinal design versus a traditional single cohort. We compare designs with 
respect to the precision of different kinds of statistical analyses, sample sizes, comparability of 
measures across cohorts and across sweeps, missing data and attrition.   
 
Section 2 provides a literature review introducing the alternative designs and their properties and 
includes rationale for implementing an accelerated longitudinal design. The literature review is also 
extended in Appendix A with an overview of the most relevant international studies using 
accelerated longitudinal designs, case studies and applications.  Section 3 presents an assessment of 
alternative design options and includes both a theoretical assessment for basic longitudinal analyses 
with more results found in Appendix B   and a simulation study for growth curve estimation where 
the results and findings are presented in Appendix C. We conclude in Section 4 with a discussion and 
also mention other relevant survey methodology considerations in an accelerated longitudinal 
design but are currently out-of-scope of this report.     
  
2. Alternative longitudinal designs and literature review   

This section discusses alternative longitudinal designs   with a focus on the early years  from birth to 
adulthood.    
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 2.1   Single cohort design approach 

The most recent birth cohort study covering the whole of the UK is the Millennium Cohort Study 
(MCS). The MCS follows approximately 19,000 children born in the UK during 2000-2001 (Joshi and 
Fitzsimons, 2016). The oversampling allows the study of children from disadvantaged and ethnic 
minority families. The MCS is regarded as a prospective cohort study as participants are followed up 
“longitudinally” over a period of time. To date, data have been collected over seven assessment 
points when respondents were 9 months, 3, 5, 7, 11 and 14 years old (Table 1). The simplicity in 
survey instruments in a single cohort study is of great advantage in a practical sense, as it does not 
have a different set of questionnaires and unique measurement schedules that are varying by 
respondents’ age.  

Along with the longitudinal observation of individuals, the large sample size, the geographical 
coverage of the whole UK1, and oversampling of vulnerable sub-groups make MCS a valuable 
resource for scientific enquiries concerning many aspects of child development over the life course 
(Connelly  and  Platt, 2014; Joshi  and  Fitzsimons, 2016). MCS has been used in a wide range of 
research domains2 including social disadvantage  (e.g. linking parental education and family income 
to children’s cognitive ability development gaps by Brown  and  Sullivan, 2014); gender-specific 
trajectories of behavioural disorders (Gutman et al., 2018), child health (e.g. mother’s health-related 
behaviours by Ward et al., 2007), developmental psychology (e.g. dynamics of family structure and 
socio-emotional well-being in the early years by Pearce et al., 2014). MCS data also provides 
evidence of intergenerational transmission of worklessness (Schoon et al., 2012).  

Table 1. MCS sweeps (prospective single cohort, data collection during 2001-2018) 

Wave Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 
Year 2001 2004 2006 2008 2012 2015 2018 (ongoing) 
Age 9 months 3 5 7 11 14 17 
 

A longitudinal study consisting of a single cohort, such as MCS, entails a relatively slow process in 
terms of data availability. While waiting for children to reach certain ages of interest, a single cohort 
approach suffers from major drawbacks in three aspects: attrition, administrative costs of tracking 
individuals over time, extended assessment time points and associated burden borne by survey 
participants. As of wave 6, 61% of the initial sample remained in the MCS due to dropouts (Joshi  and  
Fitzsimons, 2016). The dependence on cohort members’ maturation in a single cohort population 
also poses challenges for analysts. If one is interested in the adolescent development psychology for 
age 7 through 17 among those born in 2000 across the UK, for instance, one needs to allow 10 years 
for data availability under the current data collection schedules (i.e., 2008-2018). This time lag can 
be of concern due to the changing nature of social environments. Analyses results may be less timely 
and relevant to younger cohorts if there are fast-paced changes in childhood environments 
(Nicholson, Sanson, Rempel, Smart,  and  Patton, 2002). In addition, Sanson (2002) pointed out the 
nature of measurement techniques, which can be time-sensitive; measured implemented at the 

                                                             
1 Another prospective single cohort study, Next Steps (https://cls.ucl.ac.uk/cls-studies/next-steps/), or the 
Longitudinal Study of Young People in England (LSYPE) previously, covers England only. Starting at age 14 in 
2004, the original survey participants of 15,770 were followed over seven waves (annually between 2005-2010, 
then 2015). The Next Steps data’s is linked to National Pupil Database (NPD), which contain cohort members’ 
individual scores at Key Stage 2, 3, and 4. The incorporation of the UK geographical coverage would enhance 
the usability of Next Steps. 
2 Full publications using MCS can be found in www.bibliography.cls.ucl.ac.uk/bibliography. 
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onset of the study may become obsolete over time, and may no longer be cutting edge with the 
progression of the study.  Nevertheless, instruments tend to remain constant to ensure consistency 
of the collected longitudinal data in a single cohort study.  

2.2 Accelerated longitudinal design: Multiple cohort approach 

In this section, we introduce the accelerated longitudinal design and design considerations when 
planning such designs for a birth cohort study.  We also provide illustrative examples of influential 
overseas studies, a brief discussion of empirical studies using nationally-representative surveys of 
children and youth and international practices for researching vulnerable sub-groups. 

2.2.1 Introducing the accelerated longitudinal design 

In an accelerated longitudinal design, multiple samples of individuals in different age groups are 
studied at the outset and followed forward repeatedly over a period of time.  The idea of combining 
the strength of longitudinal and cross-sectional data was introduced by Bell (1953). In child 
development trajectories, Bell (1953, 1954) demonstrated the “convergence” approach as a means 
of meeting research needs not satisfied by either cross-sectional or longitudinal design. The similar 
development of the accelerated longitudinal design was also seen in psychology (Schaie, 1965, 
Nesselroade and Baltes, 1979, Meredith and Tisak, 1990). More recently, Tonry, Ohlin and 
Farrington (1991) were among the first to provide a comprehensive review of accelerated 
longitudinal designs.  
 
Figure 1 presents an illustrative example comparing a single cohort design to an accelerated 
longitudinal design with multiple cohorts.  

Figure 1. Longitudinal data structured by year and age (four annual measurements) 

 

Note: Illustrative example using four waves of data in prospective cohort studies. Respondents aged 0-3 at the 
initial survey (in year 2020) in the multiple cohort design. Age is calculated by Year-Birth year. 

As shown in Figure 1, a single cohort design (SC) only samples one group of children all born in the 
same year 2020. Figure 1 also shows an accelerated longitudinal design comprised of four cohort 
groups of differing ages. In the example, individuals at multiple ages from 0 to 3, relating to four 
birth cohorts, are recruited in the first data collection point (year 2020) and followed up over 4 
waves.  
 
A similar study with three cohorts, starting at ages 6, 7 and 8 at the first data collection point and 4 
waves is illustrated in Figure 2. The effects of cohort, age and period (wave) on the development of 
an outcome variable Y are shown in different ways.  
 
 

Design Cohort Birthyear 2020 2021 2022 2023
Single-cohort (SC) C4 2020 0 1 2 3

Multiple cohort (A) C4 2020 0 1 2 3
C3 2019 1 2 3 4
C2 2018 2 3 4 5
C1 2017 3 4 5 6

Data Re-Structured by Age

Cohort Birthyear Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7
Multiple cohort (B) C4 2020 0 1 2 3 . . . .

C3 2019 . 1 2 3 4 . . .
C2 2018 . . 2 3 4 5 . .
C1 2017 . . . 3 4 5 6 .

Year (wave, T=4)

Age (T=6)
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Figure 2. Accelerated 3-cohort design starting at ages 6,7 and 8 (Bollen  and  Curran 2006 p. 78)  

 

 
 
In Figure 2, panel (b), adjacent cohort groups are overlapped according to age3. Groups may be 
linked at their overlapping time points to approximate an overall longitudinal trajectory. The 
maximum number of overlapping groups is associated with the extent of observation periods. The 
example in Figure 2, panel (b) demonstrates that four assessments of individuals over time allow up 
to three overlaps at ages 8, 9 and 10. 

A limitation of accelerated designs displayed in panel (b) in Figure 2 is the fluctuating number of 
overlapping groups by age. At both extremes of age 6 and 11, it is solely a single birth cohort group 
contributing to the analysis outcome with a much reduced sample size compared to a single cohort.  
Therefore, it is essential to consider the breakdown of each age group at the design stage carefully in 
the calculation of the sample size, with particular attention to the extremes where overlapping is not 
possible by design. If research interest surrounds vulnerable groups of children, for instance, this 
aspect should be fully taken into account in sampling decisions to allow adequate sample size for 
meaningful group-based analyses. More details of sample size implications are described in Section 
3.1 and in Appendix B. 

Although the illustrated example in Figure 1 does not recruit a new younger cohort group (birth year 
2021 onwards) in the subsequent measurement points, it can be a possible sampling strategy (see 
Sanson, 2002) to provide more data to overlap, as part of an attempt to address attrition or 
shrinking sample size. Other strategies that can increase flexibility in design may be exploring 
options in the variation in assessment intervals, the number of cohort groups, and the total duration 
of the study.  

                                                             
3 The data rearrangement is often a useful strategy in development contexts because it is age which has more 
substantial meaning in measuring developmental trajectories over time, rather than calendar year that 
represents assessment time (Bollen & Curran, 2006). It is a researchers’ role to arrange the data in an 
appropriate structure to meet the study goal, as reference point (for instance, year 2020 in Figure 1)  may vary 
by studies.   

(a) (b) 

(c) 
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The key feature of the multiple cohort design is the ability to shorten the overall length of the study, 
whilst covering a given age range. Alternatively, it enables a wider age range to be covered by a 
study of given length. In Figure 1, the age range available from a single cohort study is from 0 to 3 
(T=4), as data covering age 4, 5, and 6 are unavailable in 2023. In an accelerated longitudinal design 
with multiple cohorts, the age range “accelerates” up to 6   with the same data collected during the 
2020-2023 period. The potential benefit to researchers is that it may be  to assess developmental 
trajectories of children for an extended age span (0-6, rather than 0-3) and observe interesting 
findings at an earlier stage, without having to wait for a single cohort to mature (Sanson, 2002: p. 42).  

As highlighted in Figure 2, panel (b), the accelerated longitudinal design ‘pieces together’ trajectories 
from cohorts 1 through 3. If there is no evidence of statistically significant cohort effects, one can 
report a common trajectory across cohorts (Duncan, Duncan,  and  Hops, 1996). On the other hand, 
if cohort effects do exist, a common trajectory may not be a useful representation across the whole 
age range and, instead, cohort-specific trajectories may be reported.  In any case, it is clear that the 
accelerated longitudinal design may add complexities for substantive researchers who will need to 
consider cohort effects and other design issues into their analyses.  
 
The aspect of utilising shorter study spans can also be one of the main shortcomings of the 
accelerated design compared to the single-cohort longitudinal design.  The concerns include limited 
capacity to observe within-individual developmental sequence and continuity (Duncan et al. 2011; 
Raudenbush  and  Chan, 1992), and limited ability to capture long-term causal effects (Baltes, 1968; 
Farrington, 1991). For example, if the social environment is changing, then for a cohort born in 2022 
and followed for 8 years, it may not be appropriate to expect that one can learn about how this 
cohort will be in their teens by ‘borrowing’ from an older cohort born in say, 2012 who have been 
followed between ages 10 and 18.  A possible solution may be using retrospective data, which can 
then be cross-checked with later prospective data. For instance, individuals may be asked whether 
they had ever engaged in specified activities, and if so, at what age they had engaged in those 
activities. The collection of retrospective data can offer the basis for an investigation of 
intergenerational effects by linking parental factors to children’s developmental trajectories 
(Farrington, 1991).  
 
On the other hand, some  analysts advocate that the capacity to anticipate long-term trends at an 
earlier stage is important in the sense that it enables timely interventions,  if necessary. According to 
Bell (1954), the rapid approximations of longitudinal results are important as social changes over an 
extended period of time may alter the value and implications of studies. Sanson (2002) argues that 
due to the shorter time required for data availability in the accelerated longitudinal design, there is 
less concern about theories, instruments and policy issues being outdated. Whilst in a single-cohort 
design, instruments tend to remain constant to maintain consistency of the collected data, multiple 
cohort designs will typically have different instruments for each cohort while still needing to ensure 
comparability of collected data between early and later cohorts.  
 
One advantage of the accelerated longitudinal design comprising of overlapping cohorts (panel (b), 
Figure 2) over the single cohort design is that it offers the opportunity of studying more than one 
time metric simultaneously and in addition, allows the possibility to untangle age and cohort, in 
order to study age, which is the optimal measure of temporal change, independent of potential 
cohort effects. It enables cohort effects to be analysed separately from age effects and also allows 
generalization to other cohorts.  If we take “cohort” as birth year  and “period” as calendar year  
(Rabe-Hesketh  and  Skrondal, 2012, p. 239), age, period and cohort are related through the identity  
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Age = Period − Cohort 

The confounding of age and period and the inability to generalise to earlier or later birth cohorts are 
basic problems for single cohort studies (Farrington, 1991). In a single cohort design where   birth 
year is fixed, age and period are intrinsically confounded so that age effects are effectively identical 
to period effects.  Similarly, with cross-sectional data, period is fixed and age and cohort are 
intrinsically confounded (Glenn, 1976).   The pooling of data from several birth cohort studies can 
help overcome these problems although  this  may require larger samples sizes and there needs to 
be sufficient overlap to be able to test for age and cohort effects, for example by testing differences 
in linear or quadrative slopes in a growth curve model  between adjacent cohort groups.  One 
application  to overcome the drawbacks of a single cohort design in the UK is in McMunn et al. (2015) 
where cohort-specific work-family life courses of three cohorts of British women and men between 
the ages of 16 and 42, were investigated using the National Survey of Health and Development 1946 
birth cohort, the National Child Development Study 1958 birth cohort and the British Cohort Study 
1970 birth cohort. However, the history of birth cohort studies in the UK since 1970 has been 
uneven, as noted earlier, especially in terms of varying time lags.  

As mentioned, the accelerated longitudinal design can create complexities that may be difficult for 
the substantive focused researcher.  Cohort effects often emerge in response to dramatic system 
changes (for example, the introduction of pre-school care), and this may impact on one part of the 
cohort but not another.  This complexity in pooling data from different cohorts may not be as 
straight-forward as simply accounting for additive cohort effects in statistical models to capture their 
differences. If cohort effects are identified in a multiple cohort design, sample sizes may be too small 
and may reduce the power of statistical analysis. For these reasons, it is important to ensure large 
sample sizes for each cohort to allow for testing and compensating for cohort effects. As seen in 
McMunn et al. (2015), there is evidence that combining different single year birth cohorts work. The 
accelerated longitudinal design may be seen as an extension of this idea of pooling existing single 
cohort studies in a more planned and structured way. 

2.2.2 Examples of  studies with accelerated longitudinal designs 

We review the literature on multiple-aged nationally-representative surveys that employ 
accelerated longitudinal designs in Appendix A.  The literature shows a mixture in surveys with 
varying degree of representativeness. While some empirical research used either primary or non- 
representative data, often limited to a certain population or target geographical locations, other 
studies capitalised on nationally-representative samples. We examine the most relevant overseas 
nationally-representative longitudinal surveys employing multiple cohort samples in Section A.1 of  
Appendix A. We place emphasis on a focused review of these longitudinal studies from Australia, US, 
Canada and Germany, and the list of studies is by no means exhaustive.  In addition, Section A.2 of 
Appendix A includes applications and case studies based on accelerated longitudinal designs for child 
development and Section A.3 includes a review of dedicated studies for vulnerable sub-groups.  

2.2.3 Design considerations for an accelerated longitudinal study 

The design of an accelerated longitudinal study requires careful consideration with respect to: 
 
• number of cohorts, including the ability to test cohort effects 
• number of participants per age- cohort group 
• extent of overlap between cohorts and the frequency and timing of measurements   
• constraints on the duration of the study 
• measuring instruments and their comparability between cohorts  



9 
 

• precision of estimates at national and regional levels  
• power in statistical modelling for addressing key research questions particularly for vulnerable 

sub-groups and cohorts 
• costs.  
 
In general, the literature shows no consensus on the above.  According to Farrington (1991), it is 
desirable that a project be limited to a total length of 10 years. When we allow for piloting and 
analyses stages, the follow-up period can take a maximum of 7 or 8 years. If there’s a need for 
analyses based on a single cohort group, for various reasons, each cohort should meet the minimum 
required number of respondents, although the cut-off point is unclear.  Galbraith, Bowden and 
Mander (2017) present an analysis of accelerated longitudinal designs with respect to cohort effects 
and the impact of costs and dropouts on the power of testing and precision of estimation 
parameters. They found that as duration-related costs increase relative to recruitment costs, the 
best designs shift towards shorter duration with the cross-sectional design being the optimal design. 
In addition, for designs with the same duration but differing interval between measurements, they  
found that  there was a cut-off point for measurement costs relative to recruitment costs relating to  
the frequency of measurements.  
  
Advice on the desirable number of overlaps among adjacent birth cohort groups is also ambiguous. 
While some point out the inadequacy of one or two overlaps between immediately adjacent birth 
cohort groups (Anderson, 1993, Rogosa, 1988), others advise no fewer than five or even six, a much 
higher threshold (Raudenbush  and  Chan, 1993; Tonry, Ohlin,  and  Farrington, 1991). Using a small 
sample of Australian adolescent school children between age 12 through 14, Watt (2008) 
investigated common developmental trajectories of Math and English scores among three cohort 
groups. The data covers calendar years 1995-1998. The sample size for each cohort group was less 
than 500 individuals (Total N=1,323), and the sample was selected from three upper-middle class 
schools. The challenges in Watt’s study were that it was small with 2-3 overlaps per age group, 
model complexity arising from using quadratic as well as cubic growth curve parameters, and the 
examination of gender-specific growth curve models, using less than 500 subjects in each cohort 
group.  

A similar issue associated with small overlapping time points was discussed by Raudenbush  and  
Chan (1993). Using the nationally-representative National Youth Survey (NYS), Raudenbush  and  
Chan (1993) demonstrated trajectories of delinquency among two groups (age 11-15, N=239 and age 
14-18, N=245 respectively). Raudenbush  and  Chan (1993) find  that their survey design permitting 
only two overlaps at  age 14 and 15 at each time point, is ill-equipped to estimate cohort 
heterogeneity in quadratic and cubic rates. Raudenbush  and  Chan (1993) further advocated higher 
cut-off points suggested by Tonry et al. (1991). 

In power analysis, using 1,000 subjects per cohort, Tonry et al. (1991) concluded that less than five 
or six overlapping time points is  unacceptable for verifying cohort effects, due to multicollinearity. 
The cut-off time point suggested by Tonry et al. is substantially higher than that of Anderson (1993) 
and Rogosa (1988). According to Farrington (1991),  longer periods of overlap between cohorts is 
optimal.   Miyazaki and Raudenbush (2000) are also in agreement and show that the power of 
testing  cohort effects increases with larger sample sizes which occur at the overlapping  time points.     

Much of the studies mentioned in the literature review relate to growth curve analysis (see Sections 
A2 and A3 in Appendix A). With recent advances in methodology and computational capacity, the 
use of growth curve modelling has grown dramatically. The growth curve model can handle an 
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accelerated cohort design sample with ease, facilitating enquiries regarding developmental 
trajectories. Recently, growth curve models have been extended to latent class trajectory analyses 
thus enhancing research scope. The examination of cohort effects can vary depending on whether 
the multilevel (MLM) or structural equation modelling (SEM) approach is used. In MLM, Miyazaki 
and Raudenbush (2000) demonstrate age and cohort (age x cohort) interaction effects empirically to 
test for cohort-specific heterogeneity, which can result from demographic and historical differences 
between cohorts. In the SEM framework, multi-group analysis is conducted by fitting cohort-specific 
group models simultaneously (Duncan et al., 2011).  
  
The contexts of using the growth curve method vary from children or adolescents’ development 
contexts (Duncan, Duncan,  and  Hops, 1996; Duncan, Duncan,  and  Strycker, 2001; Jacobs, Lanza, 
Osgood, Eccles,  and  Wigfield, 2002; Miyazaki  and  Raudenbush, 2000; Prinzie, Onghena,  and  
Hellinckx, 2006; Raudenbush  and  Chan, 1993; Watt, 2008), to life span developmental psychology 
covering adults (Muthén and Muthén, 2000) and older population ( Finkel, Reynolds, McArdle,  and  
Pedersen, 2007; Gerstorf et al. 2011, McArdle, Ferrer-Caja, Hamagami,  and  Woodcock, 2002; Orth, 
Trzesniewski, and Robins, 2010). We note that growth curve modelling is often used in traditional 
longitudinal studies as well, such as the English Longitudinal Study of Aging (ELSA), where they can  
identify cohort/period effects at a given age (see   examples in: Weber, 2016; Tampubolon and 
Maharani, 2018; Zaninotto, et al., 2018).   We examine a multilevel growth curve model and the 
impact of additive cohort effects under an accelerated longitudinal design for a small sub-group in 
the simulation study in Section 3.2 and Appendix C.   

Although an accelerated longitudinal design sample is often used in growth curve models, other 
traditional research methods to address important research questions can be used using these 
samples, particularly for the case where the variations in the age-specific development trajectories 
are too small.  For instance, Canada’s rich data, National Longitudinal Survey of Children and Youth 
(NLSCY) is used under many conventional research methods   (e.g. Baker  and  Milligan, 2016; 
Strohschein  and  Gauthier, 2018).  In general, as the sample is composed of individuals in multiple 
age-cohorts, the accelerated longitudinal design may offer a greater flexibility in analytic potential 
for addressing societal research questions within a shorter time frame compared to a single cohort 
design.  
 
Regarding missing data and attrition, an important feature in the accelerated longitudinal design is 
“planned missingness”. As illustrated in Figure 1, areas marked with a dot (.) indicate intentional 

missingness by design, due to unplanned data collection. Therefore, for missing data in the age 
range which is out of the scope of the  study,  we can assume missing completely at random (MCAR) 
(Bollen  and  Curran, 2006; Enders, 2010). Under the MCAR mechanism, the probability of missing 
data on a variable Y is unrelated to the value of Y itself and unrelated to the values of any other 
observed variables (Allison, 2001, p. 3). Although MCAR is a strong assumption, it is reasonable to 
assume when planned missing data is part of the research design.   However, it should be noted that 
a missing outcome variable that arises in the study age span to be covered (shaded areas) is typically 
assumed under the missing at random (MAR) assumption, as in growth curve modelling (Bollen  and  
Curran, 2006). The growth curve models often rely on accelerated multiple cohort samples, and have 
an ability to yield valid estimations under both MCAR and MAR conditions. In some circumstances, 
one needs to address the remaining selection bias, under missing not at random  MNAR scenarios. 
For detailed discussions on the assumptions of growth curve modelling, see elsewhere (Bollen  and  
Curran, 2006; Enders 2010; Stoel, Van Den Wittenboer,  and  Hox, 2003; Cheung, 2013). 
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In the literature review in Section A.1 of Appendix A, missing data and attrition rates are reported for 
the major studies of those employing longitudinal accelerated designs. In a single cohort design, 
missing data typically occurs in wave 1 of the study, and for those responding in wave 1, attrition 
rates increase as the cohort is investigated over time.   This problem is often mitigated by periodic 
refreshment samples throughout the course of the survey. For an accelerated longitudinal design,  
there is an implication that there may be a potential reduction in sample attrition over time owing to 
the shorter study span, which is linked to effective management in administrative costs and burden 
borne by participants  (Sanson, 2002).  

3. Quantitative assessment of alternative design options 

In this section we provide a theoretical assessment of precision in an accelerated longitudinal design 
(also in Appendix B)  and a simulation study to assess the ability to model a growth curve under 
these designs with results in Appendix C.    
 
3.1 Theoretical precision of basic longitudinal analyses 
 
A fairly wide class of methods of longitudinal analysis are based on data across a fixed interval of 
ages, denoted here age s  up to age t ( s t< ). One example is regression analysis of a variable 
measured at age t  with covariates measured at age s  or at ages between s  and t . Another is a 
comparison of the distribution of a variable measured at age t  across sub-groups defined according 
to a variable measured at age s . We assume here no missing data and that the standard error of 
any estimate is proportional to the reciprocal of the square root of the size of the sample of cases 
which are observed at all ages s up to t . The precision of a longitudinal analysis is a function of this 
sample size and we present the sample sizes below for the case of 8 measurements per cohort. In 
Appendix B we present the case of 5 measurements per cohort. 

Designs Considered for Comparison: 

Single cohort design – sample of n  babies observed at age 0 at base year and followed up at 2 year 
intervals until age 14.  

2- cohort design - 2 cohorts starting in same base year: cohort 1 is sample of / 2n  babies aged 0, 
cohort 2 is sample of / 2n children aged 6. We take 7 further measurements on each cohort at 2 
year intervals. Hence measurements at following ages: 

Cohort 1 – 0, 2, 4, 6, 8, 10, 12, 14.      Cohort 2 – 6, 8, 10, 12, 14, 16, 18, 20. 

3- cohort design -3 cohorts starting in same base year: cohort 1 is sample of / 3n  babies aged 0, 
cohort 2 is sample of / 3n children aged 6, cohort 3 is sample of / 3n  children aged 12. We take 7 
further measurements on each cohort at 2 year intervals. So measurements at following ages: 

Cohort 1 – 0, 2, 4, 6, 8, 10, 12, 14.     Cohort 2 – 6, 8, 10, 12, 14, 16, 18, 20. 

Cohort 3 – 12, 14, 16, 18, 20, 22, 24, 26. 

We consider the precision of statistical analyses after eight waves of observation, that is after all the 
above measurements are taken.   

Comparison of Designs after 8 Waves of Observation: 

Tables 2, 3 and 4 show the sample sizes for longitudinal analysis between variables measured at ages 
s  and t ( s t< ) for the single cohort,  2- cohort and 3- cohort designs, respectively.   
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Table 2.  Sample sizes for longitudinal analysis between variables measured at ages s  and t ( s t< ) 
under 1 cohort design after 8 waves of observation 

 t  
s  2 4 6 8 10 12 14 16 18 20 22 
0 n  n  n  n  n  n  n      
2  n  n  n  n  n  n      
4   n  n  n  n  n      
6    n  n  n  n      
8     n  n  n      

10      n  n      
12       n      
14            

 
Table 3.  Sample sizes for longitudinal analysis between variables measured at ages s  and t ( s t< ) 
under 2 cohort design after 8 waves of observation. Higher sample sizes are shaded darker. 

 t  
s  2 4 6 8 10 12 14 16 18 20 22 
0 / 2n  / 2n  / 2n  / 2n  / 2n  / 2n  / 2n      
2  / 2n  / 2n  / 2n  / 2n  / 2n  / 2n      
4   / 2n  / 2n  / 2n  / 2n  / 2n      
6    n  n  n  n  / 2n  / 2n  / 2n   
8     n  n  n  / 2n  / 2n  / 2n   

10      n  n  / 2n  / 2n  / 2n   
12       n  / 2n  / 2n  / 2n   
14        / 2n  / 2n  / 2n   
16         / 2n  / 2n   
18          / 2n   
20            

 
Table 4.  Sample sizes for longitudinal analysis between  variables measured at ages t  and s t<  
under 3 cohort design after 8 waves of observation. Higher sample sizes are shaded darker. 

 t  
s  2 4 6 8 10 12 14 16 18 20 22 
0 / 3n  / 3n  / 3n  / 3n  / 3n  / 3n  / 3n      
2  / 3n  / 3n  / 3n  / 3n  / 3n  / 3n      
4   / 3n  / 3n  / 3n  / 3n  / 3n      
6    2 / 3n  2 / 3n  2 / 3n  2 / 3n  / 3n  / 3n  / 3n   
8     2 / 3n  2 / 3n  2 / 3n  / 3n  / 3n  / 3n   

10      2 / 3n  2 / 3n  / 3n  / 3n  / 3n   
12       n  2 / 3n  2 / 3n  2 / 3n  / 3n  
14        2 / 3n  2 / 3n  2 / 3n  / 3n  
16         2 / 3n  2 / 3n  / 3n  
18          2 / 3n  / 3n  
20           / 3n  

 

Advantages of multiple cohort designs:  

(i) For 2- and 3- cohort designs, time is ‘accelerated’, enabling longitudinal analyses with 
16,18,20t =  for any value of s ( s t< ) of 6 or higher under the 2- cohort design, and 
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22,24,26t =  for any value of s ( s t< ) of 12 or higher under the 3- cohort design. The single 

cohort design will not extend to these age ranges.  
(ii) Cohort effects can be estimated from the overlapping age range 8 to14 for the 2- cohort 

designs. Cohort effects can also be estimated for the same age range and the additional age  
range 16 to 20 for pairs of cohorts in the 3- cohort design  albeit with less power.  In addition, 
cohort effects can be estimated across all 3 cohorts at the age of 14. 

(iii) For longitudinal analyses  with 16,18,20t =  for any value of s ( s t< ) of 12 or higher the 

sample size is highest for the 3- cohort design; 

Disadvantages of multiple cohort designs:  

(i) The sample size is halved for longitudinal analyses with t  up to age 14, for values of s ( s t< ) 
of 0, 2 or 4  under the 2- cohort design, and the sample size is reduced to a third under the 3- 
cohort design. This is the problem of ‘extremes’ mentioned in section 2.2.1. 

(ii) The 3- cohort design has a clear disadvantage over both 1 cohort and 2 cohort designs since 
for  longitudinal analyses  with t  up to 14 and s ( s t< ) of 0-10, the sample size is least under 
the 3- cohort design. 
 

 3.2   Simulation study of growth curve analyses   
 
The assumption in Section 3.1 that precision is a function of the size of the sample across a given age 
interval is reasonable for basic longitudinal analyses but not for more sophisticated ones. Here we 
consider a multilevel modelling approach to growth curve analysis and use a simulation study to 
examine the precision of parameter estimates as well as mean predicted values under alternative 
designs.  In the first simulation, Simulation A, we assume no cohort effects in the population and in 
the second, Simulation B, we assume there is a cohort effect in a population for a  2- cohort design.  
We assume that in each cohort, there are 8 waves of observations similar to the setting in Section 
3.1 although here we assume annual measurements for ease of interpretation.  
 
Since we are interested in vulnerable sub-groups, the population and sample size for the simulation 
study are small:  N=100,000, n=1,000, respectively assuming a 1/100 sample fraction. Within this 
group, we also study smaller sub-groups where we generate a random variable   at 50% (denoted 
‘sex’) and   at 10% (denoted ‘ethnic’ for ethnic minority).   Given the small sample sizes we do not 
assume missing data at this point. 
 
The results of the simulation are in Appendix C and we include the summary here:   

The simulation study shows that the precision with which the parameters of the multilevel growth 
curve model are estimated is fairly similar for the alternative designs. This is the case for all the 
parameters, including both the coefficients (fixed effects) and the parameters in the variance matrix 
of the random effects. When cohort effects are absent (Simulation A) there were two parameters 
(the intercept and age slope) where there was a slight loss of precision with the 2 and 3 cohort 
designs, but when cohort effects do exist (Simulation B) there were some coefficients where some 
estimates for the 2- cohort design were more precise. In particular, the simulation study showed 
that it is important to include cohort effects in the model for growth curve analysis.  The mean 
predicted  values of the growth curve for the overall total showed good precision compared to the 
true values in both populations of Simulation A and Simulation B,  but the growth curves for the 
smaller sub-groups and in particular for the ethnic minority showed larger deviations.   Overall, these 
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differences in precision seem rather less important than the qualitative differences between the 
designs. Thus, the 2- and 3- cohort designs enable cohort effects to be estimated, although we found 
in Table C.6 that the power with which such cohort effects can be detected may not be large. More 
importantly, if we are choosing between the kinds of designs considered here, the fact that the 
single cohort design covers a shorter age range may be viewed as an important limitation for some 
kinds of analysis.  However, we have found that fairly good estimation of the parameters of the 
multilevel growth curve model can be achieved even for the single cohort design with a limited age 
up to 7. 

4. Conclusions   
 

In this report, we have focused on the advantages and disadvantages of an accelerated longitudinal 
design for following babies and children and their transition into youth and adulthood compared to a 
single cohort design. From the review of international surveys of children and young people in 
Appendix A, it is clear that such multiple cohort designs have   been successfully implemented in 
different countries. An important advantage of accelerated longitudinal designs is that they permit 
analyses across a wider age span for a given duration of study, although a corresponding 
disadvantage is that the sample size may be reduced for some parts of the age span, especially at 
the extreme ages. This problem has been addressed by refreshment samples in some of the studies 
described in Appendix A. We note that the use of refreshment samples are often used in longitudinal 
and birth cohort studies to ensure representativeness and left-censored data. We have also seen in 
the simulation study that the parameters of growth curve models, defined across the whole age 
span, can still be estimated with similar precision to single cohort designs from an accelerated design 
for the case where cohort effects are additive. Another advantage of accelerated longitudinal 
designs is that they enable the study of different birth cohorts in a single study. This use of multiple 
cohorts also enables cohort effects to be estimated, including age-cohort interactions, unlike in a 
single cohort design. On the other hand, it does imply that researchers   need to consider more 
complex forms of analysis, which take account appropriately of such effects when analysing data 
from an accelerated longitudinal study. 

Although the theoretical scope of this report has not included practical survey methodology 
considerations, we recognize their importance for design choices and comment briefly on them here:  

• Sample frames:   Unlike many other countries, the UK does not have a population register. A 
population spine constructed from census/administrative data sources was a recommendation in 
the 2017 Longitudinal Studies Strategic Review (Davis-Kean, et al., 2018), but in the absence of 
such a spine and considering our focus in this report on ages from birth into adulthood, we need 
to  consider sampling frames from administrative data sources. Similar to other UK birth cohort 
studies, babies can  be sampled from   birth registers. Other cohorts starting at later ages could 
be sampled from the UK school census. However, there are limitations to this census since it does 
not include children in private schools or those home-schooled. For these populations, 
appropriate supplemental samples will need to be drawn, such as through an area- based cluster 
sampling design where pupils may be sampled from schools within sampled areas that are 
outside of the school census domain.  In addition, there may be particular vulnerable sub-groups 
which will need to be identified and an appropriate sampling frame developed. Note that sample 
boosting and surveys drawn from multiple sample frames  need careful methodological 
considerations in the calculation of the design weights and final survey weights. In Appendix A, 
there are examples of accelerated longitudinal designs in international studies, including 
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supplemental surveys for specialized sub-groups, with examples of sampling frames for those 
countries without a population register or spine.  

• Recruitment and survey instruments:  Compared to a single cohort study, the simultaneous 
recruitment of multiple cohorts, the need for different instruments/ questionnaires   for each 
cohort and  the management of future follow-up  in an accelerated longitudinal design  
introduces complexities and challenges. Multiple questionnaires/instruments for the different 
cohorts need to be developed and tested and more time and resources devoted to interviewer 
training so that interviewers can deliver multiple instruments to different cohorts.   The 
associated budget and resources required may exceed that of the single cohort design with the 
same overall sample size.  

• Sample sizes: The Millennium Cohort Study (MCS) sampled up to 20,000 babies and this reflected 
the given budget and desired precision at that time. Compared to such a single cohort study, 
there are other considerations of fixed and rolling costs that need to be accounted for in an 
accelerated design with 2 or more cohorts.  Fixed costs in the planning stages of an accelerated 
design need to account for developing multiple sample frames, sampling and recruiting multiple 
cohorts, development of different questionnaires/instruments and their data capture and 
interviewer training with a focus on multiple instruments.    Rolling costs at each wave of the 
survey need to account for the tracking of individuals in   different cohorts between waves and 
the data collection with multiple instruments which may be more challenging than for a single 
cohort design. However, given the fixed number of measurements in an accelerated longitudinal 
design, rolling costs needed for tracking individuals may be reduced compared to a single cohort 
design.   With a carefully planned budget framework to undertake an accelerated longitudinal 
design and the desired precision of estimates (particularly for vulnerable sub-groups), sample size 
calculations need to consider the number of cohorts, the number of overlapping ages, 
assumptions on the initial wave 1 missing data and subsequent attrition rates depending on the 
number of measurements. In addition, sample boosting may be required to target vulnerable 
sub-groups similar to the MCS.   
 

The overall conclusion of this investigation regarding the suitability of an accelerated longitudinal 
design for the future of longitudinal study in the UK is positive. We recognize, nevertheless, that, in 
coming to a decision about the longitudinal design, careful consideration is needed of the different 
types of analysis undertaken by substantive researchers and other aspects of survey methodology, 
as mentioned above.  The NLSCY of Canada appears to offer an ideal study design for child 
development.    An alternative choice would be to adapt the German KiGGS survey to the UK’s 
research needs, permitting cross-sectional as well as longitudinal investigations.  For example, five 
birth cohort groups of children aged 0, 3, 5, 7, 9 at the first assessment with relatively short 2-3 year 
intervals over 5 occasions of data collection results in a total study period of 10 years.  As shown 
from Canada’s NLSCY and KiGGS samples, a top-up of newborns in each data collection will be a 
useful strategy with regards to maintaining the level of sample representativeness, as well as testing 
for cohort effects.  With 5 multiple cohorts in this example, sample sizes of at least 3000 to 4000 per 
cohort would be appropriate and would allow sample boosting for vulnerable sub-groups and would 
be large enough to compensate for wave 1 missing data and attrition levels over subsequent waves. 
In terms of the wider strategy for the future of longitudinal studies in the UK, including previous 
birth cohort studies in 1946, 1958, 1970 and 2000, we could consider boosting the sample of   
children born around 2016 to compensate for the cancellation of the Life Study.   
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APPENDIX A:  Literature Review 
 
A.1.  International  surveys using nationally-representative samples 

The utility of multiple cohort samples in accelerated longitudinal designs can be seen in many 
international surveys, and the survey instruments vary substantially:  The number of cohorts, 
ranging from 2 (e.g. LSAC) to 11 or larger (e.g. NLSCY); the sample size per each cohort; decisions to 
recruit later cohorts; and the total duration of the study.  

Growing Up in Australia: Longitudinal Study of Australian Children (LSAC)  

Australia embarked on Growing Up in Australia: Longitudinal Study of Australian Children (LSAC4) in 
2004 as a  2-cohort design following extensive research with a primary focus on new research 
directions for Children’s health and development (Sanson, 2002).    LSAC consists of 2 cohorts: B 
(baby, age 0-1) cohort and K (kindergarten, age 4-5) cohort. The data collection occurred in 2-year 
intervals during the 2004-2016 period, and 7 waves of data are currently available. The LSAC 
obtained information for over 10,000 young children (5,107 infant and 4,983 child cohort) at the 
start of the survey (Australian Institute of Family Studies, 2015, Table 9). The retention rate from 
wave 1 is 74% for B cohort and 71%, for K cohort, respectively.    

Figure A.1. Longitudinal study of Australian children (LSAC), 2004-2016

 

Note: Data collection years shown in brackets. Data linkage: school (selective Years ranging 3-12), vocational 
education and training, higher education). Oversampling: None (rejected due to inefficient use, preferring 
separate intensive studies). 

Figure A.1 demonstrates a restructured data format with same age groups stacked up. This set up 
allows an investigation of 17-year long child development trajectories, and permits testing of cohort 
effects with the evident 8-year overlaps between age 4-5 and 12-13 between B and K cohort. The 
study, however, still fails to allow comparisons among dual cohorts concerning age before 4. This 
may depend on funding plans, but studies in Canada have allowed top-up samples for newly-born 
children in the subsequent waves. LSAC does not employ oversampling. The Australian funding body 
and expert groups preferred utility of separate intensive studies as an efficient way of allocating 
funding. Galbraith et al. (2017) have used LSAC data in their analyses on the impact of dropout on 
the statistical power in the accelerated multiple cohort design. 

 Longitudinal Surveys of Australian Youth (LSAY) 

Longitudinal Surveys of Australian Youth (LSAY5) started collecting data in 1995. LSAY incorporates 
two existing multiple-aged large scale national surveys, Youth in Transition Cohort (YITS) 1978 and 
Australian Youth Survey (AYS) 1991. The aim of the national panel survey, LSAY is to gather 
information about health, education, work, and social activities among adolescents, who are 
enrolled in school, from age 15 (Year 9). The new cycle of data collection for later cohorts occurred 

                                                             
4 https://growingupinaustralia.gov.au/ 
5 https://www.lsay.edu.au/aboutlsay 

Birthyear Cohort 0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17
2003-2004 cohort B 0-1 2-3 4-5 6-7 8-9 10-11 12-13 . .
 (2004) (2006) (2008) (2010) (2012) (2010) (2016)

1999-2000 cohort K . . 4-5 6-7 8-9 10-11 12-13 14-15 16-17
 (2004) (2006) (2008) (2010) (2012) (2010) (2016)

Age
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within 2-6 year intervals: 1995, 1998, 2003, 2006, 2009, 2015 and 2017, adding over 10,000 new 
participants in Year 9 in the subsequent waves. Once a new cohort is surveyed initially, the 
participants were contacted annually until they mature to the age of 25, over a 10-assessment 
period (see Figure A.2).  

Figure A.2.  Longitudinal Surveys of Australian Youth (LSAY), 1995-2015 

 

LSAY yields rich longitudinal data as can be seen in Figure A.3. Here, the discrete data collection 
schedule for each birth cohort group is visible. The 10-year follow up period for each cohort allows 
longer than suggested overlaps of six time points between adjacent cohorts, in testing potential 
cohort effects (Raudenbush  and  Chan, 1993, Tonry et al. 1991). The consideration to be needed 
here  may be the treatment of period effects, given the data collection spanning over 20 years.  

Figure A.3.  Longitudinal Surveys of Australian Youth (LSAY), 1995-2015 

 

Note: Shaded areas indicate future data collection schedules. Some pupils were still 14 years of age during 
1995 and 1998 surveys, so the follow-up extended to ensure all respondents had reached 25 years of age. 

Another important aspect of LSAY concerns attrition rates. Among the latest cohort of 14,251 
participants, Y09, by the fourth annual measurement in 2012, less than half remained in the survey 
(6,541)  before further shrinking to 3,518 when the respondents reach 23 years of age (NCVER, 
2018). The trend was broadly similar to Y98 cohort; from 14,117 in 1998, then just over half at 7,762 
in 2002 and the final assessment period at 3,596 participants (NCVER, 2013b). 

The study population of LSAY was randomly selected from two Year 9 classes from a national sample 
consisting of 300 schools. Sampling size was adjusted by states; Students from small states were 
over-sampled, and those from larger states were under-sampled (NCVER, 2013a).  

Since 2003, LSAY has been integrated with the OECD’s PISA, the Programme for International 
Student Assessment, a comparative study of academic achievement among nationally 
representative sample of 15-year-old students. Geographical location, gender, socioeconomic 
background were used as strata. Due to the PISA’s oversampling, students from smaller jurisdictions 

Cycles: 1st 2nd 3rd 4th 5th 6th

Birthyear Cohort 1995 1998 2003 2006 2009 2015
2000 Y15 15
1994 Y09 15
1991 Y06 15
1988 Y03 15
1983 Y98 15
1980 Y95 15

Annual Follow-up Until Age 

Birthyear Cohort 
2000 Y15 15 16 17 18 19 20 21 22 23 24 25

(2015) (2016) (2017) (2018) (2019) (2020) (2021) (2022) (2023) (2024) (2025)
1994 Y09 15 16 17 18 19 20 21 22 23 24 25

(2009) (2010) (2011) (2012) (2013) (2014) (2015) (2016) (2017) (2018) (2019)
1991 Y06 15 16 17 18 19 20 21 22 23 24 25

(2006) (2007) (2008) (2009) (2010) (2011) (2012) (2013) (2014) (2015) (2016)
1988 Y03 15 16 17 18 19 20 21 22 23 24 25

(2003) (2004) (2005) (2006) (2007) (2008) (2009) (2010) (2011) (2012) (2013)
1983 Y98 15 16 17 18 19 20 21 22 23 24 25 26

(1998) (1999) (2000) (2001) (2002) (2003) (2004) (2005) (2006) (2007) (2008) (2009)
1980 Y95 15 16 17 18 19 20 21 22 23 24 25 26

(1995) (1996) (1997) (1998) (1999) (2000) (2001) (2002) (2003) (2004) (2005) (2006)

Age
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and indigenous populations are included in LSAY. LSAY top-up sample includes 746 respondents in 
2017. 

National Longitudinal Survey of Children and Youth (NLSCY) 

The National Longitudinal Survey of Children and Youth (NLSCY6) was Canada’s long-run study that 
ran from early 1990s to late 2000s. NLSCY contacts children from birth through early adulthood. The 
initial sample is comprised of 22,831 children, who were aged 0 to 11 at the time of recruitment 
which is  12 cohorts at the onset of the study in one year age bands. The participating children can 
remain in the study until they reach the age of 25. Commenced in 1994, the study is conducted 
every two years and discontinued in 2008, completing 8 waves of data. At the final assessment 
period, the respondents were aged between 14 and 25, maintaining 57%-80% of the original sample 
(Statistics Canada, 2019a). 

The notable feature of the NLSCY is the top-up sample called, Early Child Development (ECD), later 
born age 0 and 1 groups, being recruited in the subsequent survey. The ECD for age 0-1 sample 
varied between 4,000 and 5,500 except for the survey year 1998, when nearly 10,000 youngest 
children (age 0-1) were recruited. The consistency in 2-year intervals of assessments and continuity 
maintained in the NLSCY data collection during a 14-year time period (1994 through 2008, see Figure 
A.4), providing a wealth of information from birth through early adulthood (age 0 through age 25) 
and sets an excellent example of a multiple-aged nationally representative sample. It needs to be 
noted that the complexity of instruments adds difficulties in understanding the operationalisation.  
Samples were selected from the Labour Force Survey's (LFS) sample of respondent households 
(Statistics Canada, 2019a) rather than from schools, and Birth Registry data for some 0-5-year-olds. 
No oversampling was implemented. 

Figure A.4.  Overview of National Longitudinal Survey of Children and Youth, NLSCY 

 

Note: Reconstructed by author based on NLSCY microdata user guide, cycle 8 p. 18 Figure 1 and p. 27 Table 2 
(Statistics Canada, 2019a). Early Child Development (ECD) Cohorts, 0-1 year of age in recruitment year, joined 

                                                             
6 http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=56797 

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8
Birthyear Age in 1994 1994 1996 1998 2000 2002 2004 2006 2008

2008 -14 0
2007 -13 1
2006 -12 0 ②
2005 -11 1 ③
2004 -10 0 ② ④
2003 -9 1 ③ ⑤
2002 -8 0 ② ④ 6
2001 -7 1 ③ ⑤ 7
2000 -6 0 2 ④ 6
1999 -5 1 3 ⑤ 7
1998 -4 0 2 4 8
1997 -3 1 3 5 9
1996 -2 0 2 4
1995 -1 1 3 5
1994 0 0 2 4 6 8 10 12 14
1993 1 1 3 5 7 9 11 13 15
1992 2 2 4 6 8 10 12 14 16
1991 3 3 5 7 9 11 13 15 17
1990 4 4 6 8 10 12 14 16 18
1989 5 5 7 9 11 13 15 17 19
1988 6 6 8 10 12 14 16 18 20
1987 7 7 9 11 13 15 17 19 21
1986 8 8 10 12 14 16 18 20 22
1985 9 9 11 13 15 17 19 21 23
1984 10 10 12 14 16 18 20 22 24
1983 11 11 13 15 17 19 21 23 25

Data Collection Schedule (1994-2008, 8 waves)

Early Child 
Development 
(ECD) Cohorts

Original Sample
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since 1996 (shown in box). Top-up sample of new entrants aged 2-5 join waves 6, 7 and 8, and the returning 
respondents aged 2-5 were re-interviewed. Blank areas indicate planned missing. 
 
Figure A.5 shows the data organisation scheme arranged in the accelerated cohort design. The first 
data collection period is shown as shaded area diagonally. By inspecting the diagonal dimension of   
Figure A.5, one can apply this figure   in deciding the time frame of any desirable study design. Figure 
A.5 also illustrates that both cross-sectional and longitudinal data,  for 0-5 age groups in particular 
and  for other target age groups are available, and the possibility of data augmentation with 
additional data in the subsequent waves. We can see that there are 8 overlapping groups of children 
aged 0-5, which is ideal for testing cohort effects. 

Figure A.5.  NLSCY structured by age 

 

The accelerated multiple cohort design sample was analysed by Côté et al. (2006) who explored the 
development of physical aggression from toddlerhood to pre-adolescence. Another study using 
accelerated multiple cohort sample concerns protective factors of alcohol use trajectories among 
Canadian Aboriginal adolescents with a age ranging from 12 to 23 (Rawana  and  Ames, 2012). 

Following the success of NLSCY7, Canada undertook a cross-sectional survey, Survey of Young 
Canadians (SYC) in 2010. The nationally representative SYC consists of child development data for 
children between age 0 and 9. The restriction of one child participant per household resulted in 
17,000 participants. One of the objectives was to produce early child development indicators at the 
regional level, by age for younger children between 1 and 5 years of age. The need for national-level 
data for 6-9-year old children led to the extension of age range in SYC (Statistics Canada, 2019b). 

 

 

                                                             
7 See https://crdcn.org/datasets/nlscy-national-longitudinal-survey-children-and-youth for publications using 
NLSCY data. 

Birth
year
2008 0
2007 1
2006 0 ②
2005 1 ③
2004 0 ② ④
2003 1 ③ ⑤
2002 0 ② ④ 6
2001 1 ③ ⑤ 7
2000 0 2 ④ 6
1999 1 3 ⑤ 7
1998 0 2 4 8
1997 1 3 5 9
1996 0 2 4
1995 1 3 5
1994 0 2 4 6 8 10 12 14
1993 1 3 5 7 9 11 13 15
1992 2 4 6 8 10 12 14 16
1991 3 5 7 9 11 13 15 17
1990 4 6 8 10 12 14 16 18
1989 5 7 9 11 13 15 17 19
1988 6 8 10 12 14 16 18 20
1987 7 9 11 13 15 17 19 21
1986 8 10 12 14 16 18 20 22
1985 9 11 13 15 17 19 21 23
1984 10 12 14 16 18 20 22 24
1983 11 13 15 17 19 21 23 25

Age

Wave 1 Wave 3 Wave 5 Wave 8

Early Child Development (ECD) 
Cohorts
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German Health Interview and Examination Survey for Children and Adolescents (KiGGS) 

The German Health Interview and Examination Survey for Children and Adolescents (KiGGS8) has 
collected data since 2003. KIGGS gathered data for 17,641 children age 0-11 (12 cohorts), 
encompassing a large age range at the beginning of the survey (Kamtsiuris, Lange,  and  Schaffrath, 
2007). Following the baseline survey during inception, KIGGS implemented two follow-up surveys in 
5-6 year intervals; 2009-2012 (labelled as wave 1 according to KiGGS), then 2014-2017 (wave 2) 
(Klipker, Baumgarten, Göbel, Lampert,  and  Hölling, 2018).  

The population-based survey, KiGGS is primarily intended to produce cross-sectional data covering 
from age 0 through 17, and the decision was the result of lengthy discussions among expert groups 
with the cross-sectional aspect chosen as the optimal design. KiGGS also releases longitudinal 
components for public use. It is notable that KiGGS further recruits later younger cohorts in  
subsequent waves (6 cohorts at ages 0 to 5 in wave 1 and 5 cohorts at ages 0 to 4 in wave 2), as seen 
in Canada’s NLSCY sampling strategies. What makes KIGGS unique is that along with new younger 
cohorts, it invites older individuals in waves 1 and 2, extending the age coverage up to 24 and 31, 
respectively. KiGGS data has been used in accelerated multiple cohort design samples in studying 
long-term ADHD symptoms among children and adolescents aged 7-19 years by Döpfner et al. 
(2015).  

For the purpose of this report, we restructured the data,   ignoring the age range over 22 (see Figure 
A.6). Given the data contains 3 assessments during the period between 2003 and 2014, this data 
allows three overlaps in each age, and data for the total age span of 22 years (age 0-22) can be 
obtained within 11 years from the onset of the survey.  This approach increases feasibility of the 
study as implementation costs will be significantly lower than Canada’s survey, NLSCY.  

Figure A.6. Child and Youth data, adapted from KiGGS study 

 

                                                             
8 https://www.kiggs-studie.de/english/survey/kiggs-overview.html 

Birthyear
2014 0
2013 1
2012 2
2011 3
2010 4
2009 0 5
2008 1 6
2007 2 7
2006 3 8
2005 4 9
2004 5 10
2003 0 6 11
2002 1 7 12
2001 2 8 13
2000 3 9 14
1999 4 10 15
1998 5 11 16
1997 6 12 17
1996 7 13 18
1995 8 14 19
1994 9 15 20
1993 10 16 21
1992 11 17 22

Age

Wave 1 (2009-2012): 
New birth cohorts
(age 0-5) join

Wave 2 (2014-2017): 
New birth cohorts 
(age 0-4) join

Original Sample
(2003-2006): 
age 0-11 in 2003

Survey start
(baseline)



22 
 

In the US, accelerated multiple cohort designs, studying adolescents’ behaviours in particular, has 
been extensively used using national samples, notably the National Longitudinal Survey of Youth 
(NLSY9) and a rather smaller scale survey the National Youth Survey (NYS). 
 

National Longitudinal Survey of Youth (NLSY) 79  

NLSY10 is one of the well-established long-running longitudinal studies for adolescents in the US. 
Initiated in 1979, NLSY offers nationally representative sample of 12,686 men and women born 
between 1957 and 1964 (age 14-22 when first surveyed). The eight birth cohort groups were 
followed annually through 1994, and currently re-invited every two years. The successor NLSY97 
began in 1997 and contains information for individuals aged 12-17 in the beginning of the survey. 
Currently, “round” 1 (1997-1998) through 17 (2015-2016) data is available. 

The children who were born to NLSY79 female respondents were followed in a separate survey. 
Initiated in 1986, NLSY79 Children and Young Adults contains both child-specific information as well 
as their mothers. As of 2014, 11,521 children have been identified as having been born to the 
original 6,283 NLSY female participants (Bureau of Labor Statistics, 2019). Once NLSY79 children 
reach 15 years of age, they become part of the NLSY Young Adult sample. 

For applications of NLSY, see Muthén and Muthén, who applied accelerated cohort designs in NLSY 
data estimating trajectories of drinking and alcohol related problems for individuals aged 18 through 
37 ( Muthén and Muthén, 2000). 

National Youth Survey (NYS)  

NYS11 is sponsored by the National Institute of Mental Health in the US. It contains data on young 
individuals from age 11 to 17 at the beginning of the study. Since the first wave of the survey was 
conducted in 1976, NLS follows up the original 1,725 participants annually until 1980, then 1983 and 
1987, providing 7 waves of data for public use. Given the 7 cohort groups, sample size is rather small 
(less than 300 per age). The total 11-year study allows to study developmental trajectories from 
early adolescence to early adulthood. The fact that NYS recruits 7 cohort groups and annual 
assessment for the first years leads to accumulation of rich data in a short space of time. The survey 
does not offer refreshment samples of younger cohort groups. Despite the small sample, NYS is 
frequently used. An example is understanding adolescents’ delinquent behaviours12 (e.g. Gunnison, 
2015; Li, Barrera, Hops,  and  Fisher, 2002; Raudenbush  and  Chan, 1993). 
 

A.2.  Applications and Case Studies based on Accelerated Longitudinal Designs for Child 
Development 

Table A.1 demonstrates varying operationalisations of accelerated longitudinal designs through 
growth curve models, primarily for children and young adults. As shown, relatively small sample 
sizes (100-300) from national representative studies such as NYS (from US) were used in the 
applications,   with the exception of Côté et al. (2006)  and Muthén  and  Muthén (2000). The 
noticeable variation is in the number of cohort groups, ranging from 2 (NYS from US, LSAC from 
                                                             
9 NLSY was introduced in the earlier strategic review report by Martin et al. (2006, p. 23) as an exemplar study 
of age cohorts studies. 
10 https://www.nlsinfo.org/content/cohorts/nlsy79 
11 https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/8375/datadocumentation# 

12 More publications using NYS, see https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/8375/publications 
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Australia) to 13 (KiGGS from Germany). The features of the study design are likely to be guided by 
research questions and characteristics of the sample.  

For older adults’ development studies (not shown in Table A.1), see life time development in 
intellectual abilities for individuals aged from 2 to 95 years (McArdle, Ferrer-Caja, Hamagami,  and  
Woodcock, 2002), self-esteem development of individuals from 25 to 104 years of age (Orth, 
Trzesniewski,  and  Robins, 2010), and cognitive aging among elderly (Finkel, Reynolds, McArdle,  and  
Pedersen, 2007; Gerstorf et al. 201113). Growth curve modelling is often used in traditional 
longitudinal studies as well, particularly using the  English Longitudinal Study of Aging (ELSA).   

Table A.1. Literature of use of  growth curve modelling in national samples having  accelerated 
longitudinal designs    

Empirical Study NR ACS 
(domain) 
 

Birth 
Cohort 
Groups 

Initial Age   
 

Waves 
of Data 

Per Age (N) 

Watt (2008) No Yes 
(Education) 

3 Age 12-14 4 <500 

Raudenbush  and  
Chan (1993) 

NYS  Yes 
(Behaviour) 

2 Age 11  and  
14 

4 <300 

Duncan, Duncan  and  
Strycker (2001) 

NYS  Yes 
(Alcohol use) 

4 Age 11-14 5 App. <200 

Prinzie, Onghena  
and  Hellinckx (2006) 

No  Yes 
(Aggression) 

4 Age 4-7 3 <200 

Duncan, Duncan  and  
Hops (2001) 

No Yes 
(Alcohol use) 

4 Age 12-15 3 Min. 92 
Max. 146 

Galbraith, Bowden  
and  Mander (2017) 

LSAC Yes 
(Child 
development) 

2 Age 0-1  and  
Age 4-5 

7 5,107 (infant)  
4,983 (child)  
 

Muthén  and  
Muthén (2000) 

NLSY97 Yes 
(Alcohol use) 

8 Age 18-25 7 Min. 833 
Max. 4624 

Côté, Vaillancourt, 
LeBlanc, Nagin  and  
Tremblay (2006) 

NLSCY Yes, 
Group-based 
trajectories 
(Aggression) 

10 Age 2-5  6 App. 1,000 

Rawana  and  Ames 
(2012) 

NLSCY Yes 
(Alcohol use) 

11 Age 12-13 6 >300  

Döpfner, Hautmann, 
Görtz-Dorten, Klasen, 
Ravens-Sieberer, The 
BELLA study group 
(2015) 
 

KiGGS Yes 
(ADHD 
symptoms) 

13 Age 7-16 3 Min. 101 
Max. 640 

 
Note: NR=whether the study is Nationally Representative sample. Per Age=non-overlapped, single birth cohort 
group. ACS=accelerated  longitudinal design. NYS=National Youth Survey (location: US), LSAC=Growing Up in 
Australia: Longitudinal Study of Australian Children (Australia). NLSY97= National Longitudinal Survey of Youth 
97 (US). NLSCY=National Longitudinal Survey of Children and Youth (Canada). KiGGS=German Health Interview 
and Examination Survey for Children and Adolescents (Germany) 
 

                                                             
13 Gerstorf et al. (2011) investigates cohort differences (those born during 1886-1913 vs 1914-1948) among 50- 
and 80- year old individuals’ cognitive decline.  
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A.3.  Dedicated studies for vulnerable groups 

The international longitudinal surveys using multiple cohort samples have adopted strategies  that 
ensures population-representative data. Oversampling for particular vulnerable groups can be one 
of the considerations in the survey design for more focused research. In addition, among the 
international surveys, there are those that  uniquely assess specific target populations and can 
provide focused data.   

In Canada and Australia, separate surveys aiming to study specific marginalised populations exist. 
For instance, Canada’s history on disability-specific surveys goes back to 1980s (e.g. Canadian Health 
and Disability Survey) (Arim, Findlay,  and  Kohen, 2016). For children, Aboriginal Children’s Survey 
(ACS) began data collection for Aboriginal children under the age of six years in 2006. Similarly, 
Australia has launched a mixed-methods cohort study: ‘Next Generation: Youth Well-being Study’ 
with plans to recruit 2,250 Aboriginal adolescents aged 10-24 between April 2018 to June 2020, from 
rural, remote and urban communities in Central Australia, Western Australia and New South Wales, 
in order to assess their overall health and well-being (Gubhaju et al., 2019). 

Other recommendations include  a consideration of surveys targeting   specific age groups, such as 
pre-schoolers, to facilitate in-depth assessments of vulnerable individuals.  The  Early Development 
Instrument (EDI) Data from Canada is one example:   https://edi.offordcentre.com/.The EDI is a 
response to recommendations on the use of new knowledge about brain development of children 
from “Early Years Study” in 1999. The EDI is built on instruments used in the country’s existing 
population-level survey  NLSCY. By reflecting newer developments in school readiness and 
developmental health, EDI has been in operation since 2003. EDI studies 5-year-old kindergarten 
children in Canada, by using a nationally-representative questionnaire, which is completed by 
kindergarten teachers. Kindergarten is chosen as 90% of the eligible children attend. Presently, data 
from 2004 to 2014 is available. Oversampling is not used. EDI is linked to neighbourhood and 
socioeconomic data, creating the Canadian Neighbourhoods and Early Child Development (CanNECD) 
database. EDI’s ambition is to identify “developmentally” vulnerable children at an earlier stage prior 
to formal education. EDI is increasingly adapted and piloted worldwide, including Australia, New 
Zealand, and US. Currently, EDI is also piloted in England and Scotland 
(https://edi.offordcentre.com/about/what-is-the-edi/). The EDI data are collated and managed by 
the Offord Centre for Child Studies, at McMaster University in Ontario, Canada.  

Canada’s population-based EDI was adopted in Australia in 2009 with the aim of guiding national 
and state policy and informing program development.  Australia adopted Canada’s EDI and 
Australian Early Development Census (AEDC) was created in 2009, and further data collection 
occurred in 2012  and 2015 (Boller  and  Harman-Smith, 2019).  
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APPENDIX B:   Theoretical precision of basic longitudinal analyses after  5 Waves of Observation 
 
In Section 3.1 we compared the 1- cohort, 2- cohort and 3- cohort designs after 8 waves of 
observations.  Here we present the same analysis after 5 waves of observation where we assume 
that we have measurements at the   following ages: 

1- cohort design: ages 0, 2, 4, 6, 8; 

2- cohort design: ages 0, 2, 4, 6, 8 in cohort 1 and ages  6, 8, 10, 12, 14 in cohort 2; 

3- cohort design: ages 0, 2, 4, 6, 8 in cohort 1, ages  6, 8, 10, 12, 14 in cohort 2 and ages 12, 14, 16, 
18, 20 in cohort 3. 

Comparison of 2- cohort design with single cohort design 

Tables B.1 and B.2 show the sample sizes for longitudinal analysis between variables measured at 
ages s  and t ( s t< ) for the single cohort and 2- cohort designs, respectively. We find the following 
advantages and disadvantages of the 2- cohort design. 

Advantages of 2- cohort design over single cohort design:  

(i)  time is ‘accelerated’, enabling longitudinal analyses with 10,12,14t =  for any value of s ( s t< ) 

of 6 or higher. For such cases longitudinal analysis, it  is not possible for the single cohort 
design. 

(ii) cohort effects can be estimated at the overlapping ages 6 and 8. 

Disadvantage of 2- cohort design over single cohort design:  

(iii) The sample size is halved for longitudinal analyses with t  up to age 8, for values of s    ( s t< ) 
of 0, 2 or 4. 

Table B.1  Sample sizes for longitudinal analysis between variables measured at ages s  and t
( s t< ) under 1- cohort design after 5 waves of observation 

 t  
s  2 4 6 8 10 12 14 16 18 20 22 
0 n  n  n  n         
2  n  n  n         
4   n  n         
6    n         
8            

10            
12            
14            
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Table B.2  Sample sizes for longitudinal analysis between variables measured at ages s  and t
( s t< ) under 2- cohort design after 5 waves of observation. Higher sample sizes are shaded darker. 

 t  
s  2 4 6 8 10 12 14 16 18 20 22 
0 / 2n  / 2n  / 2n  / 2n         
2  / 2n  / 2n  / 2n         
4   / 2n  / 2n         
6    n  / 2n  / 2n  / 2n      
8     / 2n  / 2n  / 2n      

10      / 2n  / 2n      
12       / 2n      
14            

 

Comparison of 3- cohort design with 2- cohort and single cohort designs 

Table B.3 provides properties of the 3- cohort design analogous to Tables B.1 and B.2. The pros and 
cons of the 3- cohort design are as follows. 

Table B.3  Sample sizes for longitudinal analysis between  variables measured at ages t  and s t<  
under 3- cohort design after 5 waves of observation. Higher sample sizes are shaded darker. 

 t  
s  2 4 6 8 10 12 14 16 18 20 22 
0 / 3n  / 3n  / 3n  / 3n         
2  / 3n  / 3n  / 3n         
4   / 3n  / 3n         
6    2 / 3n  / 3n  / 3n  / 3n      
8     / 3n  / 3n  / 3n      

10      / 3n  / 3n      
12       2 / 3n  / 3n  / 3n  / 3n   
14        / 3n  / 3n  / 3n   
16         / 3n  / 3n   
18          / 3n   
20            

 

Advantages of 3- cohort design over both 1- cohort and 2- cohort designs:  

(iv) time is accelerated further, enabling longitudinal analyses with 16,18,20t =  for any value of s

( s t< ) of 12 or higher. For such cases longitudinal analysis is not possible for the single cohort 
or 2- cohort designs; 

(v) for longitudinal analyses  with 12s =  and 14t =  the sample size is highest for the 3- cohort 
design; 

(vi) cross-sectional cohort effects, across pairs of cohorts, can be estimated for ages 8 and 14. 

Advantage of 3- cohort design over single cohort design, but disadvantage relative to 2- cohort 

design:   

(vii) Longitudinal analyses is feasible with 10,12,14t =  for any value of s ( s t< ) of 6 or higher, 
unlike single cohort design. However, sample size is less than for 2- cohort design. 

Disadvantage of 3- cohort design  over both 1- cohort and 2- cohort designs: 
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(viii) For longitudinal analyse  with t  up to 8 and s ( s t< ) of 0-6, the sample size is least for the 3- 
cohort design. 

Note that there are no situations where it is possible to estimate cohort effects from the 2- cohort 
design but not the 3- cohort design.  
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APPENDIX C:    Results of Simulation Study 
   

The purpose of the simulation study introduced in Section 3.2 is to assess whether we can estimate a 
growth curve using a multilevel model based on an accelerated longitudinal design with multiple 
cohorts, and examine the precision of parameter estimates of the models and their mean predicted 
values.    

In the first simulation, Simulation A, we assume no cohort effects in the population and in the 
second simulation, Simulation B, we assume that there is a cohort effect in a population under a  2- 
cohort design.  We assume that in each cohort, there are 8 waves of observations similar to the 
setting in Section 3.1 although here we assume annual measurements for ease of interpretation.   

Since we are interested in vulnerable sub-groups, the population and sample size for the simulation 
study are small:  N=100,000, n=1,000   assuming a 1/100 sample fraction. Within this group, we also 
study smaller sub-groups where we generate a random variable   at 50% (denoted ‘sex’) and   at 10% 
(denoted ‘ethnic’ for ethnic minority).   We assess the power of statistical testing for cohort effects 
under these conditions. 
 
Simulation A:  No cohort effects in the population 

We generate annual values of a dependent outcome variable for ages 0 to 19 for a single population 
according to a quadratic multilevel growth curve model. The model includes fixed sex and ethnic 
minority effects as well as random effects for both the intercept and slope. Age is centred at 9.5.  
The parameter values for generating the population are listed in the second column of Table C.1.   
Note that the variable ‘cohort’ under the 2-cohort design is a dummy variable with a value of 1 
defined for the first cohort and 0 for the second cohort, and ‘cohort1’ and ‘cohort2’  under the 3-
cohort design are dummy variables with a value of 1 defined for the first cohort and 0 otherwise, 
and a value of 1 defined for the second cohort and 0 otherwise, respectively.    
 
We then draw 500 simple random samples of size 1,000 and repeat the   steps described  below 
three times for each of the different cohort designs: a single cohort design, a 2- cohort design and a 
3- cohort design.  We assume 8 years of observations so that the single cohort includes observations 
0 to 7, the 2-cohort design includes observations 0 to 7 in the first cohort and 6 to 13 in the second 
cohort, the 3-cohort design includes observations 0 to 7 in the first cohort, 6 to 13 in the second 
cohort and 12  to 19 in the third cohort.  For each design, with a sample size of 1,000 and 8 annual 
observations, the long format dataset for fitting  the  multilevel growth curve model contains a total 
of 1000×8=8000 observations.   Note that under a single cohort, we are able to model the growth 
curve from 0 to 7, under the 2-cohort design, we model the growth curve from 0 to 13 and under 
the 3-cohort design, we model the growth curve from 0 to 19. Given the assumption of a small 
sample size and smaller sub-groups, we do not assume missing data at this stage. 
 
The steps are: 
1. Estimate model parameters for each of the 500 samples under each design using the same 

covariates as in the true model (assuming no model misspecification). For the 2- and 3- cohort 
designs, the model was fitted with and without cohort effects. 

2. Assess the precision of the parameter estimates.    
3. Calculate the mean predicted values of the growth curve averaged across the 500 samples under 

each design.  
4. Assess the precision of the mean predicted values 
5. Conduct a statistical test to compare the  mean of the outcome variable at the overlapping ages 

for the 2-cohort and 3-cohort designs. 
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Table C.1 presents the averages of the parameter estimates over the 500 samples and their standard 
errors. Standard errors are calculated from the simulation standard deviation of the parameter 
estimates across the 500 samples divided by the square root of 500.    We present the results in 
Table C.1 under the 2-cohort and 3-cohort designs with the cohort effects included in the multilevel 
growth curve model as there was little difference between the estimates for other parameters 
compared to the model without cohort effects.   
 
Table C.1.  Average parameter estimates of growth curve with standard errors  (Simulation A, no 
cohort effects,   500 samples)    
 
   True 

Parameters 
Single cohort 2-cohort 3- cohort 
Parm SE Parm SE Parm SE 

Fixed Effects 
Intercept 0.85 0.8524* 0.00069 0.8527* 0.00080 0.8535* 0.00088 
Cohort none - -  -0.0016 0.00092 - -  
Cohort1 none - -  - -  -0.0012  0.00104 
Cohort2 none - -  - -  -0.0029* 0.00108 
Ethnic -0.008 -0.0043*  0.00151 -0.0046* 0.00147 -0.0052* 0.00149 
Sex -0.08 -0.0813* 0.00092 -0.0813* 0.00089 -0.0811* 0.00090 
Age 0.45 0.4504* 0.00031 0.4506* 0.00037 0.4499* 0.00041 
Ethnic*Age -0.00002 -0.0010 0.00074 -0.0011  0.00074 -0.0013 0.00075 
Sex*Age -0.0002 -0.0002 0.00043 -0.0001 0.00043 -0.0001  0.00043 
Cohort*Age none - -  -0.0007  0.00042 - -  
Cohort1*Age none - -  - -  0.0005 0.00057 
Cohort2*Age none - -  - -  0.0002 0.00051 
Age_squared -0.01 -0.0100* 0.00001 -0.0100* 0.00001 -0.0100* 0.00001 

Random Effects (Unstructured Variance Matrix) 
UN(1,1) 0.08 0.0797* 0.00017 0.0800* 0.00016 0.0800* 0.00017 
UN(2,1) 0.004 0.0041*  0.00006 0.0041* 0.00006 0.0041*  0.00006 
UN(2,2) 0.02 0.0201* 0.00004 0.0200*  0.00004 0.0200*  0.00004 
Residual 0.01 0.0100* 0.00001 0.0100*  0.00001 0.0100* 0.00001 

(*) denotes significance at 5% significance level 
 

In Table C.1   we see good parameter estimation under all designs with little differences in the 
precision of the estimates. Only the intercept and slope (age) showed increasing standard errors 
across the different designs.   The main effect of ethnic minority showed deviations from the true 
parameters,   likely due to the small sample size. The interactions of ethnic minority and sex  with 
age were not significant for any of the designs.  In addition,   cohort effects and their interactions 
with age were largely non-significant but this was expected as no cohort effects were introduced 
into the population through the generating model.   However, one exception was the main effect of 
cohort2 with a confidence interval of (-0.00498, -0.00074). 
 
Table C.2 shows the true growth curve mean values at each age   for the whole population and the  
sex  and ethnic minority subgroups. For each sample and age, the mean of the predictions of the 
growth curve was calculated and then averaged over the 500 samples. We present in Table C.2 the 
percent relative absolute deviation of these averaged  mean  growth curve    predictions   from the 
true mean values based on the  single, 2- cohort and 3 -cohort designs.  We note that all true mean 
growth curve values are included in the confidence intervals of the averaged mean growth curve 
predictions according to the simulation standard errors.   
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Table C.2  True mean  values of the growth curve for total and subgroups (Sex 50% and Ethnic 
Minority 10%)   with percent relative absolute  deviations of averaged  mean  growth curve    
predictions   under each cohort design  (Simulation A, no cohort effects,   500 samples)    
 

Age True Mean Values   Percent Relative Absolute Deviation  of  Estimated Mean Predicted Values 
Single Cohort 2-cohort 3- cohort 

All Sex   Ethnic All Sex   Ethnic All Sex   Ethnic All Sex   Ethnic 
0 -4.37 -4.41 -4.40 0.01 0.07 0.05 0.01 0.00 0.06 0.03 0.20 0.11 
1 -3.74 -3.78 -3.77 0.02 0.08 0.01 0.00 0.01 0.03 0.04 0.21 0.08 
2 -3.13 -3.17 -3.16 0.02 0.07 0.02 0.00 0.01 0.04 0.04 0.21 0.10 
3 -2.54 -2.58 -2.58 0.01 0.09 0.03 0.01 0.01 0.00 0.04 0.23 0.05 
4 -1.97 -2.01 -2.01 0.01 0.09 0.02 0.01 0.00 0.02 0.04 0.24 0.08 
5 -1.42 -1.46 -1.46 0.01 0.12 0.07 0.02 0.01 0.01 0.04 0.28 0.06 
6 -0.89 -0.93 -0.93 0.05 0.10 0.06 0.03 0.11 0.03 0.05 0.21 0.01 
7 -0.38 -0.42 -0.42 0.00 0.27 0.09 0.01 0.23 0.08 0.06 0.36 0.08 
8 0.11 0.07 0.07    0.09 1.75 5.73 0.68 0.61 3.67 
9 0.58 0.54 0.54    0.04 0.08 0.48 0.14 0.06 0.10 
10 1.03 0.99 0.98    0.08 0.00 0.35 0.12 0.08 0.08 
11 1.46 1.42 1.41    0.05 0.03 0.26 0.08 0.09 0.02 
12 1.87 1.83 1.82    0.03 0.05 0.17 0.02 0.07 0.10 
13 2.26 2.22 2.21    0.06 0.09 0.12 0.02 0.02 0.05 
14 2.63 2.59 2.58       0.04 0.19 0.29 
15 2.98 2.94 2.93       0.06 0.20 0.30 
16 3.31 3.27 3.26       0.03 0.17 0.26 
17 3.62 3.58 3.56       0.05 0.19 0.33 
18 3.91 3.87 3.85       0.05 0.19 0.31 
19 4.18 4.14 4.12       0.04 0.20 0.32 
Total  Absolute Percent  
Relative   Deviation 

0.13 0.89 0.36 0.46 2.39 7.39 1.66 4.02 6.43 

Average  Absolute Percent  
Relative   Deviation 

0.02 0.11 0.04 0.03 0.17 0.53 0.08 0.20 0.32 

 
In Table C.2, we see that whilst the single cohort design only allows estimation up to the age of 7, 
the 2-cohort design allows estimation up to the age of 13 and the 3-cohort design allows estimation 
up to the age of 19 under the same time frame. Up to the age of 7, there is little difference between 
the designs with respect to their percent relative absolute deviations from the true values. The 
largest percent relative absolute deviation occurs at the smallest value of the growth curve at age 8  
since in this calculation, the absolute relative deviation is divided by the true value in the population  
which is very small  (0.11 for the total and 0.07 for the sex and ethnic minority subgroups).    In 
particular, the ethnic minority (10% of the population) growth curve has a substantial deviation from 
the true value at this age and the older ages also show larger deviations for both the 2-cohort and 3-
cohort designs.  Note that for the 2-cohort design, ages 6 and 7 have a larger sample size compared 
to the other ages due to the overlap and for the 3-cohort design, ages 6 and 7 and ages 12 and 13 
have larger sample sizes compared to the other ages.  We therefore expect that at these ages, the 
growth curve estimation should be more precise compared to other ages. However, we see a larger 
deviation for the sex growth curve for ages 6 and 7. In general, the 3-cohort design shows slightly 
less precision than the single and 2-cohort designs but this is outweighed by the ability to estimate a 
growth curve of 20 years within the same time span of 8 years of measurement.     
  
In Table C.3, we test whether there is a significant difference between cohorts in the mean of  the 
outcome variable that was used to estimate the growth curve models shown in Tables C.1 and C.2 
using a t-test where the null hypothesis is no difference  in means.  The aim is to test whether there 
is a cohort effect at the overlapping ages of the cohorts. For the 2-cohort design, the overlapping 
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ages are 6 and 7, and for the 3 cohort design, the overlapping ages   are 6 and 7 and ages 12 and 13. 
Table C.3 shows the number of times the null hypothesis was rejected in the 500 samples (significant 
differences in the means), the average mean difference across the 500 samples and simulation 
standard errors.   Note that none of the average mean differences in Table C.3 was significantly 
different than the value of 0. 
 
Table C.3.  Results of t-test for testing differences in mean outcome variable across cohorts  in 2-
cohort and 3-cohort designs (Simulation A, no cohort effects,   500 samples)    
 
Age Percent rejections of 

null hypothesis of 
equal means 

Average Mean Difference   
(SE) 

2- cohort design 
Age 6 6.2 -0.0005 (0.0016) 
Age 7 4.6 -0.0006 (0.0013) 

3- cohort design 
Age 6 7.2 0.0007 (0.0021) 
Age 7 7.2 0.0016 (0.0017) 
Age 12 5.6 -0.0024  (0.0017) 
Age 13 4.8 -0.0023  (0.0021) 
 
In Table C.3, we see that the  average mean difference is not significantly different from zero for 
each of the overlapping ages  according to  the simulation  standard errors  and  that the expected 
number of rejections of the null hypothesis of equal means at 5% is largely respected.      
 
Simulation B:  Cohort effects in the population   
  
We repeat the simulation for the single and 2-cohort designs where the true model for generating 
the population now has   a cohort effect and a cohort × age interaction.    We continue with a small 
population of size N=100,000, for which values of the dependent outcome variable are generated 
across 2 cohorts as well as across ages 0 to 19. The true parameters for generating the population 
are listed in the second column of Table C.4.  Note that the variable ‘cohort’ under the 2-cohort 
design is a dummy variable with a value of 1 defined for the first cohort and 0 for the second cohort. 
This simulation also includes the sex sub-group at 50% and the ethnic minority sub-group at 10% 
similar to Simulation A.  
 
We drew 500 samples of size 1,000.  For the single cohort design we drew the whole sample from 
the first cohort and for the 2-cohort design we drew half of the sample from the first cohort and half 
of the sample from the second cohort. Again we assume 8 years of observations so that the single 
cohort includes observations 0 to 7 and the 2- cohort design includes observations 0 to 7 in the first 
cohort and 6 to 13 in the second cohort.   Given the assumption of   small sample sizes representing 
vulnerable sub-groups, we do not assume missing data at this stage. 
 
To illustrate the difference between Simulation A and Simulation B, we present in Figure C.1 the 
mean growth curve  for one of the samples for  the 2-cohort design from Simulation A  without 
cohort effects  (panel (a))  and Simulation B  with cohort effects  where the cohort effects and 
interaction with age are included in the growth curve model (panel (b)).  In panel  (c) and panel (d) of  
Figure C.1, we zoom in on the overlapping age groups at ages 6 and 7 for Simulation A and 
Simulation B respectively. Panel (d) clearly shows the cohort effects at the overlapping ages and the 
need to account for the cohort effects in the multilevel growth curve models.   
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Figure C.1  Mean growth curve for 2-cohort designs from Simulation A (no cohort effects)  (panel 
(a)) and Simulation B (cohort effects)  (panel (b)) for one sample.   Overlapping ages of Simulation 
A are   in panel (c)   and overlapping ages of Simulation B are in panel (d) 
  
                        Simulation A (panel (a))                                            Simulation B (panel (b)) 

   
                       
 
     Simulation A overlapping ages (panel (c))                       Simulation B overlapping ages (panel (d)) 

 
 
 
Table C.4 presents the average parameter estimates and their standard errors for the population 
where cohort effects have been added. Standard errors are calculated from the simulation standard 
deviation of the parameter estimates across the 500 samples divided by the square root of 500.        
We present the estimates in Table C.4 for the 2-cohort design   with and without the cohort effects 
included in the model.    
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Table C.4.     Average parameter estimates of growth curve with standard errors    (Simulation B, 
with cohort effects,   500 samples)    
 
   True 

para-
meters 

Single 2-cohort – without 
cohort effects 

2-cohort – with cohort 
effects 

Parm SE Parm SE Parm SE 
Fixed Effects 

Intercept 0.85 0.8931* 0.00067 0.8676* 0.00056 0.8535* 0.00066 
Cohort 0.04 - -  - -  0.0369*  0.00089 
Ethnic -0.008 -0.0031 0.00161 -0.0077* 0.00149 -0.0077* 0.00149 
Sex -0.08 -0.0876* 0.00090 -0.0826* 0.00084 -0.0825*  0.00084 
Age 0.45 0.4708* 0.00030 0.4593* 0.00027 0.4509* 0.00035 
Ethnic*Age -0.00002 0.0007 0.00072 0.0003 0.00072 0.0003 0.00072 
Sex*Age -0.0002 0.0003 0.00043 -0.0012* 0.00042 -0.0012* 0.00042 
Cohort*Age 0. 02 - 0.00000 - -  0.0204*  0.00044 
Age_squared -0.01 -0.0100* 0.00001 -0.0103* 0.00001 -0.0100* 0.00001 

Random Effects (Unstructured Variance Matrix) 
UN(1,1) 0.08 0.0794*  0.00016 0.0802* 0.00017 0.0799*  0.00017 
UN(2,1) 0.004 0.0039* 0.00006 0.0041* 0.00006 0.0039*  0.00006 
UN(2,2) 0.02 0.0200*  0.00004 0.0200* 0.00004 0.0199*  0.00004 
Residual 0.01 0.0100* 0.00001 0.0100* 0.00001 0.0100* 0.00001 

(*) denotes significance at 5% significance level 
 
In Table C.4, under a population generated with cohort effects according to the parameters in the 
second column of the table, the single cohort design which was drawn from the first cohort only 
(and had a dummy variable equal to 1)    shows good parameter estimation for the main effects and 
age squared when combining the true values of the cohort effect of 0.04 with the intercept of 0.85 
and the cohort*age interaction of 0.02 with the age effect of 0.45.  Other parameter estimates are 
not well-estimated under the single cohort design, particularly the interactions of the ethnic 
minority and sex with age where there is a change in sign.  However, these interaction terms were 
not significant.   
 
In Table C.4, comparing the 2-cohort design with and without   cohort effects included in the 
multilevel growth curve model, we see slight bias in the intercept and slope (age) when ignoring the 
cohort effects.  These parameter estimates are more precise when  cohort effects are added into the 
model. The cohort effect and the interaction of cohort and age  are  indeed significant as expected in 
this simulation study. The ethnic minority interaction with age is   not well-estimated similar to the 
result under the single cohort, but the parameter estimate is not significant. The interaction of sex 
with age is better estimated and is indeed significant under the 2-cohort design.     
 
Table C.5 shows the true growth curve mean values at each age    for the whole population and for 
the sex and ethnic minority sub-groups. For each sample and at each age, the mean of the 
predictions of the growth curve was calculated and then averaged over the 500 samples. We present 
in Table C.5 the percent relative absolute deviation of these averaged  mean  growth curve    
predictions   from the true mean values based on the  single and  2- cohort design (with cohort 
effects added to the model).  We note that all true mean growth curve values are included in the 
confidence intervals of the averaged mean growth curve predictions according to the simulation 
standard errors.   
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Table C.5.  True mean  values of the growth curve for total and subgroups (Sex 50% and Ethnic 
Minority 10%)   with  percent relative absolute deviations of averaged  mean  growth curve    
predictions   under single  and 2-cohort design  (Simulation B,  with cohort effects,   500 samples)    
 
Age Single Cohort 2- cohort design 

True Mean Values 

Percent Relative 
Absolute Deviation 
from Mean Predicted 
Values True Mean Values 

Percent Relative 
Absolute Deviation 
from Mean Predicted 
Values 

All Sex 
Eth-
nic All Sex 

Eth-
nic All Sex 

Eth-
nic All Sex 

Eth-
nic 

0 -4.53 -4.57 -4.58 0.00 0.01 0.05 -4.53 -4.57 -4.58 0.05 0.04 0.15 
1 -3.88 -3.92 -3.93 0.02 0.02 0.10 -3.88 -3.92 -3.93 0.02 0.02 0.21 
2 -3.25 -3.29 -3.30 0.01 0.02 0.06 -3.25 -3.29 -3.30 0.04 0.02 0.19 
3 -2.63 -2.68 -2.68 0.02 0.04 0.04 -2.63 -2.68 -2.68 0.02 0.00 0.19 
4 -2.04 -2.09 -2.10 0.01 0.00 0.08 -2.04 -2.09 -2.10 0.03 0.04 0.10 
5 -1.47 -1.52 -1.52 0.04 0.01 0.11 -1.47 -1.52 -1.52 0.07 0.05 0.34 
6 -0.92 -0.97 -0.97 0.15 0.11 0.14 -0.91 -0.95 -0.95 0.09 0.20 0.11 
7 -0.39 -0.44 -0.44 0.02 0.11 0.31 -0.38 -0.43 -0.43 0.07 0.31 0.03 
8       0.11 0.07 0.06 1.22 3.02 7.22 
9       0.58 0.54 0.53 0.25 0.43 0.62 
10       1.03 0.99 0.98 0.11 0.15 0.04 
11       1.46 1.42 1.42 0.14 0.07 0.20 
12       1.87 1.83 1.82 0.14 0.08 0.05 
13       2.26 2.22 2.21 0.11 0.02 0.16 
Total  Absolute Percent  
Relative   Deviation 0.26 0.32 0.89 

Total  Absolute Percent  
Relative   Deviation 2.36 4.43 9.61  

Average  Absolute Percent  
Relative   Deviation 

0.03 0.04 0.11 

Average  Absolute 
Percent  Relative   
Deviation 0.17 0.32 0.69 

  
 
In Table C.5, we see that whilst the single cohort design only allows estimation up to the age of 7, 
the 2-cohort design allows estimation up to the age of 13.  Under the single cohort design, we see 
low percent relative absolute deviations from the true values up to the age of 7 with the ethnic 
minority having larger deviations compared to the total and the sex group. Similar to Table  C.2  
under the 2-cohort design, the largest deviation occurs  at the smallest value of the growth curve   at 
age 8 since the calculation involves dividing by the true value which is  0.11 for the total, 0.07 for the 
sex group and 0.06 for the ethnic minority group.   The ethnic minority group have the largest 
deviations under the 2-cohort design as well.  Also, compared to Table C.2 we see larger deviations 
under the 2-cohort design where the population was generated with a cohort effect compared to 
the case where no cohort effect was introduced into the population in Simulation A. Under the 2-
cohort design the sample size is larger at ages 6 and 7 compared to the other ages, but we do not 
see a particular improvement in the mean prediction of the growth curve at these ages.     
 
Table C.6 contains the test for significant differences between cohorts in the mean of the dependent 
outcome variable that was used to estimate the growth curve models shown in Tables C.4 and C.5 
using a t-test where the null hypothesis is no differences in means.  The aim is to test whether there 
is a cohort effect at the overlapping ages of the cohorts.  Table C.6 shows the number of times  the 
null hypothesis was rejected in the 500 samples (significant differences in the means), the average 
mean difference across the 500 samples and simulation standard errors.   
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Table C.6.  Results of t-test for testing differences in mean outcome variable across cohorts  in 2-
cohort design (Simulation B, with cohort effects,   500 samples)    
 
Age Percent rejections of 

null hypothesis of 
equal means 

Average Mean 
Difference   
(SE) 

2 cohort design 
Age 6 15.4% -0.0354* (0.0015) 
Age 7 7.6% 0.0134* (0.0012) 

(*) denotes significance at 5% significance level 
 
In Table C.6, we see that the  average mean difference is significantly different from zero for each of 
the overlapping ages  according to  the simulation  standard errors  and  that the expected number 
of rejections of the null hypothesis of equal means is greater than  5%.    Further work will be to 
assess the power of statistical testing on larger sample sizes.  
 
 
We summarize the findings of the simulation study  in Section 3.2.    
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