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Abstract 

It is commonly accepted that the use of retrospective questions in surveys makes 

interviewees face harder cognitive challenges and therefore leads to less precise measures 

than questions asking about current states. In this paper we evaluate the effect of using 

data derived from retrospective questions as the response variable in different event 

history analysis models. Two common specifications in event history analysis are studied, 

single and repeated events. For each of these specifications four event history models are 

considered, an accelerated life Weibull, an accelerated life exponential, a proportional 

hazards Cox, and a proportional odds logit. The impact of measurement error is assessed 

by a comparison of the estimates obtained when the models are specified using durations 

of unemployment derived from a retrospective question against those obtained using 

validation data derived from a register of unemployment. Results show large attenuation 

effects in all the regression coefficients. These effects are relatively similar across 

models, while the consideration of repeated events reduces the average size of the 

attenuations.  
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Measurement error, event history analysis, retrospective question, register data, 
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1. Introduction 

Retrospective questions are a widely used tool in surveys when there is an interest in 

capturing changes over time. These types of questions ask respondents for information 

about events from the past. They obtain information on a particular span of time at a 

single occasion, and are therefore usually cheaper than the alternative approach of 

repeatedly contacting respondents during that span of time as in longitudinal or 

prospective designs.  

Because the interviewee is contacted only once, there is no risk of attrition (that is 

subjects dropping out of the study) or lack of consistency derived from, for example, 

changes in the wording of questions over time. Moreover, retrospective questions can 

capture information on the full history of an event for a particular period of time, whereas 

repeated questions on current state are only able to provide a series of snapshots. They 

can only capture within wave transitions if retrospective questions are included at each 

wave
1
.  

The major problem for retrospective questions stems from their higher propensity to 

generate measurement error (ME) in the responses. In particular, interviewees answering 

retrospective questions are faced with a higher cognitive challenge since not only do they 

need to interpret the question correctly but they also need to recall it. Furthermore, the 

memory failures that generate ME in retrospective questions are often interrelated with 

the nature of the topic and with the relative difficulty of reporting it (low saliency, social 

desirability, etc.), resulting in complex error-generating mechanisms. 

In this paper we study the implications of using data collected from retrospective 

questions in statistical models used for longitudinal data. In particular we consider the 

consequences of using data derived from these questions as the response variable in event 

history analysis (EHA) models. Within the field of statistics, EHA could be defined as the 

branch of longitudinal data analysis where discretely defined outcomes are studied. The 

impact of ME is assessed by comparing estimates obtained from models that are specified 

                                                 
1
 See Solga 2001 for a comparison of data quality derived from prospective and retrospective questions. 
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using durations of unemployment derived from a retrospective question against those 

obtained using validation data derived from a register of unemployment. 

In choosing to study the consequences of ME in the response variable of EHA models we 

address an area which has not been widely researched. In the analysis of ME a majority 

of studies have focused on settings where the explanatory variables were the ones prone 

to ME, in what is known as the “errors in variables” problem. This focus on the 

predictors can be explained from the widespread consideration that ME affecting the 

response variable only affects the precision of the model and therefore it is a lesser 

problem. In addition, the study of ME was until recently restricted to analyses using 

linear models, with the seminal work of Fuller (1987) as the main reference. In the last 

decade the study of ME has been extended to other non-linear models, especially after the 

publication of Carroll’s et al. (2006) work. However, the study of ME in EHA models has 

been identified by many authors as an area in need of further contributions, (Augustin (p. 

2, 1999), Pyy-Martikainen and Rendtel (p.140, 2009), Skinner and Humphries (p. 23, 

1999), and Jäckle (p.2, 2008)).  

This paper is structured as follows: in the next two sections we examine the statistical 

models that are used in our analysis. The EHA outcome models are presented first in 

Section 2, which is divided in three subsections, each one dedicated to the different 

families of EHA models (parametric, semi-parametric, and non-parametric), and a final 

subsection introducing the differences between EHA models that consider one or more 

than one spell. In Section 3 we introduce the ME models which have been most often 

used in the literature; these models are subsequently criticised in 3.1 because of their 

inadequacy to reflect ME derived from retrospective questions. In Section 4 we present a 

summary of findings from other studies in the literature. In Section 5 we describe the 

characteristics of the data that we use in our analysis, and in Section 6 we present results 

from our analyses. Results from models for first spells are included in 6.1 and results 

from models for repeated events come in 6.2. Finally, we conclude in Section 7 with a 

summary of the results and how these relate to previous findings in the literature. 
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2. Event History Analysis 

The group of techniques used in EHA are also known by the names of time to event, 

survival or duration analysis, depending on the scientific discipline where they are used. 

Regardless of which field these techniques are applied to, they all study the spells of time 

in a particular state of interest until a transition from that state is made. There are two 

fundamental aspects of the study of times-to-event: the survivor function and the hazard 

rate.  

Here we present these two concepts using a mathematical illustration taken from Box-

Steffensmeier and Jones (2004). Let the durations (the time spent in a particular state) be 

denoted by T, a positive random variable, which for the time being will be assumed to be 

continuous. Let realizations of T, denoting the duration of a particular unit be denoted by 

t. If these values are ordered by size a cumulative distribution function, 𝐹(𝑡), can be 

established as follows,  

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑(𝑡) = 𝑃𝑟 (𝑇 ≤ 𝑡)
𝑡

0

 

and for all points that 𝐹(𝑡) is differentiable a density function 𝑓(𝑡) can be defined, 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑(𝑡)
 

The density function can also be expressed in terms of probability, 

𝑓(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

𝑃𝑟(𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡)

∆𝑡
 

Hence, when a variable capturing durations is analysed, the cumulative distribution 

function indicates the probability of observing a case lower or equal to time t, while the 

density function gives the unconditional failure rate in an infinitesimally small 

differentiable period of time, that is, the proportion of individuals making a transition 

from one state to another.  

In addition, these two functions can be used to define the survivor function and the 

hazard rate. In fact the survivor function, 𝑆(𝑡), is the complement of 𝐹(𝑡); 
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𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑃𝑟 (𝑇 > 𝑡) 

Thus, the survivor function denotes the probability of a duration being equal to or greater 

than t, and cases that have not yet experienced the transition from their original state at 

that time are said to have survived. 

Finally, from the concepts of failure and survival the hazard rate can be defined as the 

ratio between the two, 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

Thus, the hazard rate gives the rate at which the unit’s duration ends by t, given that the 

unit had survived until t; 

ℎ(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

𝑃𝑟 (𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
                                      (1) 

In other words, the hazard rate for an interval [𝑡, 𝑡 + ∆𝑡] denotes the rate of failure in that 

interval conditional on survival at or beyond time t. 

Here we have shown how the cumulative distribution function, density function, survivor 

function, and hazard rate are mathematically linked so, if any one of these is specified, 

the others can be determined. However, the estimation of survivor and hazard values for a 

specific time in continuous data is problematic since they are infinitesimally small.  

An alternative is to group durations into intervals. This is the procedure followed in life-

tables although this solution is not optimal. The basic problem with grouped estimation 

methods is that they artificially categorize what is by definition a continuous variable, 

and different categorizations yield different estimates. An alternative to life-tables when 

estimating the survivor function is to use the Kaplan-Meier method. 

With respect to the life-table method, the Kaplan-Meier method differs in one 

fundamental feature: instead of rounding event-times to construct the intervals, it 

generates different intervals so that each contains just one observed event at a time. This 

way, each Kaplan-Meier interval begins at one observed event-time and ends just before 

the next. It can be specified as follows, 
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�̂�(𝑡) =∏
𝑛𝑗 − 𝑑𝑗

𝑛𝑗
𝑡𝑗<𝑡

                                                      (2) 

where dj represents the number of failures in a particular time t, the subscript j is used to 

identify subjects, 𝑗 = 1, … ,𝑁, while the meaning of nj differs according to whether 

censored cases are present in the dataset. Censored cases are those for which the 

transition from their original state has not been recorded before the end of the window of 

observation. When there is no censoring, nj is just the number of survivors just prior to 

time tj; with censoring, nj is the number of survivors less the number of censored cases. 

The survivor function and hazard rate are fundamental in the exploration of time-to-event 

processes, but they are only descriptive statistics, that is they only measure parts of the 

process without controlling for other variables. When interested in ascertaining the 

conditional association of different variables with the observed durations, EHA models 

need to be used. Most of them are developed from a specification of the hazard rate, 

which can be treated as having a dependency on time as well as a dependency on the 

regressors, denoted by 𝑥. Then we can re-express the hazard rate from equation 1 as 

ℎ(𝑡|𝑥) = 𝑙𝑖𝑚
∆𝑡→0

𝑃𝑟 (𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡, 𝑥)

∆𝑡
 

where the hazard could be understood as an unobserved variable that controls both the 

occurrence and the timing of events.  

Any model used for the analysis of event data can be characterized by two features, the 

nature of the response variable and whether a specific statistical distribution is used. The 

first feature distinguishes two groups of EHA models, accelerated life models (AL 

henceforth) and hazard models. The former group models the observed event time 

(failure time) directly, whereas the latter models the hazard rate. In terms of statistical 

distributions, EHA models can be classified into three families: parametric, semi-

parametric and non-parametric models. We now review the models that are studied in 

Section 6 using this last distinction.  

2.1. Parametric Models 

The basic logic underlying parametric event history models is to directly model the time 
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dependency exhibited in event history data. This is done by specifying a density 

distribution for the failure times. The exponential, Weibull, Gompertz, or Gamma models 

are examples of models belonging to the parametric family, although in our analysis we 

focus solely on the Weibull and exponential models. If the Weibull distribution is used the 

baseline function can only be monotonically increasing, monotonically decreasing, or flat 

with respect to time. The hazard rate is then expressed as; 

ℎ(𝑡) = 𝜆𝛼(𝜆𝑡)α−1 

where λ is a positive scale parameter and 𝛼 is known as the shape parameter. When 𝛼>1, 

the hazard rate is monotonically increasing with time, when 𝛼<1, the hazard rate is 

monotonically decreasing, and when 𝛼=1 the hazard is flat, constant at λ, this last being 

the case of the exponential distribution. When conditioning on covariates the Weibull 

model takes the following shape;  

ℎ(𝑡|𝑥) = 𝛼(𝑡)𝛼−1𝑒𝑥𝑝(𝛽′𝑥)                                                 (3) 

and now the scale parameter would be 𝑒𝑥𝑝(𝛽′𝑥), and the shape parameter is 𝛼. The 

impact of the covariates is to alter the scale parameter, while the shape of the distribution 

remains constant. 

The Exponential and the Weibull model are members of the family of proportional hazard 

(PH) models; that is, unit changes in the covariates will imply constant changes in the 

risk of event occurrence in a direction and magnitude indicated by their slope 

coefficients. However, these models could also be expressed as modelling the log of the 

event duration, which makes them accelerated life (AL) models. The Weibull model 

would then be expressed as; 

𝑙𝑜𝑔(𝑇) = 𝛽′𝑥 + 𝜎𝜖                                                       (4)        

where 𝜖 is a stochastic disturbance term with a type-1 extreme value distribution scaled 

by 𝜎. Here, in contrast with their hazard specifications, slope coefficients are indicative 

of the change in log-durations (the logs of the expected life time) for different values of 

the covariates. 



9 

The specification for the exponential PH model is shown in equation 5 below, which 

differs from the PH Weibull model defined in equation 3, in its use of a constant hazard 

rate, 

ℎ(𝑡|𝑥) = ℎ(𝑡)𝑒𝑥𝑝(𝛽′𝑥)                                                 (5) 

For the transformation into an AL model a process similar to the one for the Weibull case 

is pursued, a linear model for the logs of the durations is specified, 

𝑙𝑜𝑔(𝑇) = 𝛽′𝑥 + 𝜖                                                       (6) 

with a disturbance term 𝜖 following an extreme value distribution with mean zero and 

variance 1, which in this case is not affected by a scaling factor 

Parametric EHA models are usually estimated using maximum likelihood. Censoring is 

controlled for with a likelihood function formed by two components: the density of 

failure times, 𝑓(𝑡), and the survivor function, 𝑆(𝑡). Censored observations only 

contribute to the likelihood function through the survivor function, and non-censored 

observations through the density function.  

2.2. Semi-Parametric Models 

In some instances parametric models can be too restrictive. First, it is necessary to decide 

how the hazard rate depends on time by specifying a distribution that might be 

inadequate. Second, these models do not allow for time varying regressors. In semi-

parametric models these assumptions are relaxed. Examples from this family are the 

piecewise constant exponential and the Cox model.  

In our analysis we focus on the impact of ME in the latter, developed by Sir David Cox 

(1972, 1975), which can be understood as a simple generalization of the parametric 

models presented so far: 

ℎ(𝑡|𝑥) = ℎ0(𝑡)e𝑥𝑝(𝛽
′𝑥)                                                  (7) 

The baseline hazard function is left completely unspecified, whereas, like the Weibull and 

exponential models, the regressors are assumed to have proportional effects on the hazard 

rate. The estimation of such a model is possible using partial likelihood, a variant of 

maximum likelihood where only the order of the failure-times is taken into account. As 
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such, each interval between two failures is modelled separately. For these two reasons the 

Cox model is often categorised as a semi-parametric model. Furthermore, because of its 

reliance on partial likelihood the Cox model can be extended easily to allow for 

explanatory variables that change in value over time.  

On the other hand, the Cox model, like any other model assuming continuous time, is 

subject to problems derived from tied events, which arises when two or more subjects 

experience a transition at a given point in time. This problem is more frequent the wider 

the intervals used to collect the data are. It is in these situations, where event data is 

clearly discrete, that non-parametric methods can be more appropriate.  

2.3. Non-Parametric Models 

These models do not examine duration, but rather event counts. Hence, prior to the 

estimation of non-parametric models, a person-time unit dataset needs to be formed. As 

opposed to datasets normally used in parametric and semi-parametric models, where each 

case is characterised by a variable denoting duration, 𝑦𝑖, and another indicating whether 

that event was right censored, 𝛿𝑖, datasets used in non-parametric models transform the 

duration of spells into a binary variable representing person-period cases. This binary 

variable now uses subindexes i and t to differentiate both subjects and time-periods, it 

takes a value of 1 when the failure time is reached, otherwise it is coded as 0, regardless 

of whether the spell was censored. More formally:  

𝑦𝑡𝑖 = {

0   𝑡 < 𝑦𝑖
0   𝑡 = 𝑦𝑖, 𝛿𝑖 = 1
1   𝑡 = 𝑦𝑖, 𝛿𝑖 = 0

 

The discrete-time hazard for interval t is the probability of an event during interval t, 

conditional on both the fact that the event has not occurred in a previous interval and on 

the set of covariates included in the model.  

ℎ(𝑡) = 𝑃𝑟 (𝑇 = 𝑡𝑖|𝑇 ≥ 𝑡𝑖 , 𝑥) 

Since the dependent variable is binary, constructing models relating this variable to the 

covariates involves selecting one from a variety of suitable distributions for binary data. 

Two commonly used link functions are the logistic distribution and the standard normal 
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distribution. The use of these distributions gives rise to the logit and the probit models, 

respectively. Here we will use the former, which transforms the response variable into the 

log of the odds-ratio of failure, 

𝑙𝑜𝑔 (
𝛾𝑡𝑖

1 − 𝛾𝑡𝑖
) = 𝛽′𝑋𝑡𝑖                                                   (8) 

where 𝛾𝑡𝑖 represents the probability of observing 𝑦𝑡𝑖 = 1.  

When using the logistic transformation this model is also known as the proportional odds 

(PO from now on) model because as in the proportional hazards model, changes in the 

regressors are assumed to induce proportional changes in the response variable. In 

addition, on the right hand side of (8), besides the set of explanatory variables of interest, 

a series of temporal dummies are included in order to specify the baseline hazard 

function. Each of the dummy variables included represents a period of the time-frame, in 

what is called a piecewise-constant hazards model. The additional set of parameters 

required to estimate this baseline hazard function reduces the degrees of freedom, 

affecting precision, which is a weakness of non-parametric models. 

2.4. Single vs Repeated Events 

The descriptive statistics and models presented here refer to a particular setting of EHA, 

one where only the first transition from the state of interest is contemplated. Some life-

course events are bound to have such a design, e.g. the study of time to first marriage. 

However, there are other settings where the event of interest can be repeated. This is the 

case for the topic of study in this paper, spells of unemployment.  

To illustrate the difference between designs for single and repeated spells we use Figure 1 

below, which represents the three first cases from the sample of work histories captured 

in the retrospective question that we use in the analysis (see Section 5). Time in 

unemployment is represented by a continuous line. States different from unemployment 

(employed, out of the labour force, etc.) have been aggregated into a single category and 

they are denoted by a dashed line. In both the setting for single and repeated events the 

first case shows a transition at day 160, and the third is right censored since it remained in 

unemployment until the end of the window of observation. The only difference is found 
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in case 2, for which the repeated events model would consider the first spell of 

unemployment terminating at day 40 and a second spell spanning from days 110 to 230.  

The consideration of multiple spells is generally desirable since studies that choose to 

look only at the first occurrence of an event ignore the repeated nature of the dataset. 

More precisely, discarding second and subsequent events implies first, a reduction in the 

sample size of events and second, the possibility of introducing selection bias since this 

process implicitly assumes that the time to the first event is representative of the time to 

all events. 

Figure 1. Exemplar durations of three work histories 

 

However, the use of repeated events models is not always straightforward. In particular, 

careful consideration needs to be given to issues of dependency of events within subjects, 

and to whether the repeatable events follow a sequential order, or whether they are out of 

order. For example, regarding the order of events, in a study of time to marriage we might 

      

      

         

1 

2 

3 
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expect some covariate effects such as partner’s wealth to have a stronger effect on 

subsequent marriages. Regarding the problem of dependency between spells of the same 

subject, two solutions can be explored. We can use marginal models which treat this 

dependency as noise, or we can use random effects to model it.  

Marginal models maintain the assumption of an independent correlation structure, 

regardless of what the true structure is. These models concentrate on adjusting the 

estimated variance of the regression coefficients which
2
, in the presence of dependency 

between observations, would be systematically underestimated. The most widely used 

variance adjustment method applied in marginal models is the “sandwich” variance 

estimator. Williams (2000) demonstrates that this is an unbiased estimator for cluster 

correlated data. It is calculated as the product of three matrices: the matrix capturing the 

observation-level score vectors
3
 (the meat of the sandwich), which is pre- and post-

multiplied by the model-based variance matrix (the bread of the sandwich). 

Multilevel models specify the dependence structure through the inclusion of random 

effects. Survival models with random effects are also known as frailty models, or shared 

frailty models when there is more than one observation per group or cluster. These 

models are often used when interest is in modelling the heterogeneity arising from 

unobserved covariates which tends to attenuate baseline functions as subjects drop out the 

risk set. 

In its simplest form only one random term is introduced to represent the possibility of 

random intercepts
4
, that is, different intercepts for each subject. The random intercept 

(RI) is shared by all spells experienced by the same individual and can be interpreted as 

subject level unobserved heterogeneity. After controlling for the individual-specific 

unobservables represented by the random effect, we assume that the durations of episodes 

for the same individual are independent (Steele, 2005).  

                                                 
2
 This is not necessarily the case for models using generalised estimating equations, which are semi-

parametric and therefore less sensitive to variance structure specifications than likelihood based models. 
3
 Derived from the maximum likelihood estimation process in the parametric and non-parametric models, 

or from pseudolikelihood in the PH Cox model. 
4
 See Steele (2008), and Kelly (2012) for a good review of how multilevel modelling can be applied to 

longitudinal data analysis, and the software available to estimate these types of models, respectively. 
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This extension can be formally illustrated using the PO logit model specified in equation 

8 as an example. In particular, 𝜑𝑖, the RI term, is introduced on the right-hand side of the 

model, and it is supposed to be Normally distributed with a mean of zero and constant 

variance. So the RI PO logit model is defined as follows, 

𝑙𝑜𝑔 (
𝛾𝑡𝑖

1 − 𝛾𝑡𝑖
) = 𝛽′𝑋𝑡𝑖 + 𝜑𝑖 

In this model, the log-odds of an event ending at a particular time t will be shifted up or 

down by a constant amount for all of the events experienced by that individual i.  

3. Measurement Error Models 

ME models are those where an observed variable that is prone to error is specified in 

relation to the true variable from which it stems, and the error term that contaminates it. 

The classical additive model is by far the most frequently used model in the study of ME. 

It is simple, it applies to many settings where the ME is supposed to be random, and it is 

assumed by many of the methods designed for the adjustment of ME. In addition, it 

serves as the foundation upon which more sophisticated models can be built.  

The classical model was expressed by Novick (1966) as a way of operationalizing his 

idea of the classical test theory: “By classical test theory we shall mean that theory which 

postulates the existence of a true score, that error scores are uncorrelated with each 

other and with true scores and that observed, true and error scores are linearly related.” 

(Novick, p. 1, 1966). This can be formalized as follows,  

𝑋∗ = 𝑋 + 𝑈                                                               (9) 

where 𝑋∗ is the observed variable, which is equal to its equivalent true variable, 𝑋, plus 

the ME term, 𝑈, that is normally distributed. The imposition of an additive relationship 

between the true variable and the error term is a specific one from the classical additive 

model, although other forms can be used within the classical framework. In fact, what 

classifies a ME model as classical is the following set of five assumptions regarding the 

ME term: 
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𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒𝑙

{
 
 

 
 
𝐸(𝑈) = 0   ;                                                     𝑛𝑢𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦

𝑉𝑎𝑟(𝑈𝑖) = 𝑉𝑎𝑟(𝑈)   ;                               ℎ𝑜𝑚𝑜𝑠𝑘𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

𝐶𝑜𝑣(𝑋, 𝑈) = 0    ;                 𝑖𝑛𝑑𝑒𝑝.  𝑒𝑟𝑟𝑜𝑟 𝑎𝑛𝑑 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒

𝐶𝑜𝑣(𝑈𝑖, 𝑈𝑗) = 0  ;                                              𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

𝐶𝑜𝑣(𝛹,𝑈) = 0    ;                               𝑛𝑜𝑛 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑡𝑦

    (10) 

1. Null expectancy refers to the assumption that the error term is non-systematic, or in 

other words, the expected value of the error term is zero, 𝐸(𝑈) = 0. 

2. The assumption of homoscedasticity indicates that the variance of the error term is 

assumed to remain constant across the sample, 𝑉𝑎𝑟(𝑈𝑖) = 𝑉𝑎𝑟(𝑈).  

3. The third assumption specifies that the correlation between the true value and the error 

term is assumed to be zero, 𝐶𝑜𝑣(𝑋, 𝑈) = 0. 

4. Furthermore, the correlation between different values of the error term is also assumed 

to be zero, 𝐶𝑜𝑣(𝑈𝑖, 𝑈𝑗) = 0, where 𝑈𝑖, 𝑈𝑗 represent any two values of the error term, for 

subjects 𝑖 and 𝑗.  

5. The last assumption, non-differentiality, only becomes relevant when 𝑋∗ is used in a 

regression model. It indicates that, given the true value, the ME is not associated with the 

remaining variability in the response, E(Y|X, 𝑋∗) = 𝐸(𝑌|𝑋), or alternatively, 

𝐶𝑜𝑣(𝛹,𝑈) = 0, where 𝛹 represents the residual term from the regression model.  

It is well known that the inclusion of variables prone to ME in regression models 

produces bias in estimates of the regression parameters, although Fuller (1987) 

demonstrated that this is not the case when classical ME affects the response variable in a 

linear model. If, instead of observing the true response variable Y, a different variable Y∗, 

subject to classical additive ME is observed,  

𝑌∗ = 𝑌 + 𝑉 

the ME term, 𝑉, will be absorbed by the residual term of the model having only an 

impact on the overall precision,  

𝑌∗ = 𝛽0 + 𝛽1𝑋 + (𝛹 +  𝑉)                                               (11) 

A similar result holds for other measurement error models such as the classical 

multiplicative. This is an extension of the classical model presented in (equation 9), based 
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on similar assumptions, but where the additive relation between the true variable and the 

error term is replaced by a multiplicative one, 

𝑌∗ = 𝑌 ∙ 𝑉                                                              (12)  

Some researchers (Holt, McDonald, and Skinner, 1991, Skinner and Humphreys, 1999, 

Augustin, 1999, and Dumangane, 2007) have suggested the use of classical multiplicative 

models in order to better specify MEs produced by memory failures. Here the same 

assumptions about the error term (equation 10) apply, with the distinction that 𝐸(𝑉) = 1 

and the error term uses a distribution bounded from 0 to ∞ such as the log-normal 

distribution. The multiplicative relationship is then used to take into account the 

possibility that longer durations are affected more intensely by the error-generating 

processes
5
.  

Skinner (1999, 2000) illustrates how classical multiplicative errors do not produce a bias 

in the systematic parts of AL models, only in the estimation of the distribution of the 

durations. Following the same rationale as in the case of classical additive errors affecting 

the response variable seen above, and for the case the AL exponential model (equation 6), 

we can see that the impact of classical multiplicative ME resides in the stochastic part of 

the model, 

𝑙𝑜𝑔𝑌∗ = 𝛽0 + 𝛽1𝑋 + (∈ +𝑙𝑜𝑔𝑉)                                         (13) 

The problem is that contrary to what is commonly assumed this result cannot be safely 

generalized beyond the simple settings used to derive equations 12 and 13. When the 

outcome model is non-linear or the type of ME is not classical or both, there is a strong 

chance that modelling a response variable prone to ME is going to bias the regression 

coefficients.  

One example where the classical model is entirely inadequate is in those cases where the 

unit of observation is formed by binary data as in the PO logit model. Specifically, the 

ME model where an error term is added to the true value would not make sense because 

categorical variables lack a scale. Here, the problem of ME becomes one of 

misclassification (MC henceforth), and the ME should be specified as the probability of 

                                                 
5
 This argument is elaborated in Section 3.1. 
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correctly seeing each of the categories of the variable. In the case of binary variables 

these are referred to as sensitivity and specificity, 

{
𝑃(𝑥∗ = 1|𝑥 = 1) = 𝜃1|1 ;           𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝑃(𝑥∗ = 0|𝑥 = 0) = 𝜃0|0  ;           𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)
 

These two probabilities are complemented by their opposites, respectively the probability 

of observing false negative and false positives,  

{
𝑃(𝑥∗ = 0|𝑥 = 1) = 𝜃0|1 ;           𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑃(𝑥∗ = 1|𝑥 = 0) = 𝜃1|0  ;           𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Together these four probabilities can be used to specify a MC model for a binary variable, 

and they are summarized in the misclassification matrix, represented by 𝜃 in the equation 

below 

𝜃𝑋∗|𝑋 = 𝑃(𝑋∗ = 𝑥∗|𝑋 = 𝑥)                                                (13) 

We continue this section with a presentation of the reasons why ME processes stemming 

from retrospective questions with a longitudinal component depart from the classical 

framework. 

3.1. Types of Measurement Errors in Retrospective Reports of 

Unemployment 

First of all, when considering ME derived from retrospective questions it is important to 

recognise the differences between these types of questions. There are retrospective 

questions which generate answers that can be operationalized as a single variable in the 

form of duration or count data, such as the number of times a spell was experienced in a 

particular time-frame, or the duration of an specific event. In these instances, the classical 

multiplicative model might be an appropriate ME specification. For example, if the 

number of spells of unemployment experienced in the last 12 months is asked, it could be 

expected that interviewees who have only had a few of them, say 0, 1, or 2 spells, might 

offer more accurate reports than those who experienced a higher number. Similarly, for 

questions asking about the time since last employed, it could be expected that workers 

recently made unemployed will recall more accurately than those who have been 

unemployed for a longer time. In other words, when the question asked requires an 
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answer that can be represented by a single number, memory failures might make the 

recall of high figures less precise, and thus, the classical multiplicative model becomes an 

appropriate specification for ME. 

The problem of finding an appropriate ME specification becomes less straightforward for 

questions that request to report an entire event history for a specific period. These 

questions require ordering and dating events as they are reported
6
, which makes the error 

generating mechanisms more complex. Pina-Sánchez, Koskinen, and Plewis (2012) 

distinguish between three types of ME typically stemming from retrospective questions 

where work histories are reported: miscounting the number of spells, mismeasuring 

spells’ length, and misclassifying spells’ categories.  

We illustrate the differences between these types of ME graphically in Figure 2 below. 

Here, we have taken the three work histories presented in Figure 1 where every subject 

starts from the same category (unemployed) and only first spells are considered. We 

assume that the work histories presented in lines 1, 2, and 3, are the true ones, and are 

denoted by 𝑌. The error term is represented by 𝑉 and it is encompassed by the bracket 

immediately below, whereas the observed duration is represented by 𝑌∗. 

When spells are mismeasured the observed durations can appear shorter or longer than 

the true ones. This is represented by the first case shown in Figure 2, where the only spell 

of unemployment experienced within the window of observation has been reported to be 

70 days longer than it really was. Mismeasurement errors are therefore no different from 

the ME affecting the simpler type of retrospective questions discussed before, and there is 

no reason to believe that they cannot be adequately specified under the classical 

multiplicative model 

Miscounting the number of spells can result in omitting or over-counting spells. Over-

counting spells is not a problem when using EHA models for single spells, since any 

reported spell beyond the first transition is not considered by the model. However, the 

omission
7
 of spells could distort estimations based on this data. Take the second work 

                                                 
6
 See Section 5 to find out how these questions can be phrased. 

7
 Levine (1993), comparing retrospective questions using a one year recall time with questions asking about 

the current work status, found that between 35% and 60% of persons failed to report at least one spell of 

unemployment. 
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history presented in Figure 2: if the spell representing a different state than 

unemployment starting in day 30 was omitted, the two spells of unemployment that  

occur before and after would be linked, and the reported work history for that subject 

would look like a unique spell of unemployment. The consequences of these types of 

errors are twofold. The magnitude of ME as a proportion of the true duration is 

potentially larger than what is seen in errors derived from problems of mismeasurement. 

On the other hand, the assumption of independence between the true duration and the ME 

used in the classical framework is violated (𝐶𝑜𝑣(𝑌, 𝑉) ≠ 0). Given the fixed time 

covered by the window of observation, the longer the first spell of unemployment is the 

lower the probability of omitting subsequent spells. 

Finally, we turn to problems of MC spells taking the form of reported false positives
8
 (FP 

hereafter) and false negatives (FN). In FP cases the observed duration is entirely formed 

by the error term, 𝑌∗ = 𝑉; this is represented by the third work history shown in Figure 2. 

The fact that the observed duration is not formed by a combination (either additive or 

multiplicative) of true duration and noise renders the classical framework inadequate. In 

addition, for the first spells setting, FP cases represent an artificial increase of the sample 

size. Given our setting where only work histories that start from unemployment and first 

spells are considered, when FN are present the problem becomes one of missing data 

because FN durations are not observed. However, as long as the probability of 

committing FN is independent of the duration of unemployment (missing completely at 

random) it will only reduce the precision of the EHA model estimates. 

When repeated spells are considered, the implications of these types of retrospective 

errors become even more complex. Problems of mismeasurement and FP are equivalent 

to what we have seen in the scheme for first spells. However, now FN cases would also 

be possible, having a similar effect to omitting cases before (see case 2 in Figure 2). 

Moreover, reports resulting in omission or over-inclusion of spells could alter the sample 

size and produce different outcomes. 

 

                                                 
8
 Bound (2001) in a review of the literature concludes that in cross-sectional surveys 11-16% of 

respondents stated to be unemployed are likely to be misclassified. 
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Figure 2. Work histories affected by ME in a First Spells Setting 

 

These are presented in Figure 3 below, where the second case from Figures 1 and 2 is 

used to illustrate them. The first case in Figure 3 shows an example of over-inclusion. 

This situation would lead to wrongly considering an additional spell of unemployment. 

The second case shows the second spell of unemployment being omitted; in this case the 

repeated nature of the work history would be lost. The third case shows an omission of 

the spell different from unemployment, which would result in linking the first and second 

spell of unemployment in a single one encompassing the whole window of observation. 

So, just like in the FP case described in Figure 2, all of these problems of miscounting 

will now represent a misspecification of the classical model since they are not the result 

of a combination of true durations and noise, but just the latter.  
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Figure 3. Work histories affected by ME in a Multiple Spells Setting

 

To sum up, retrospective questions are problematic not only because of the higher 

prevalence of ME in their answers, but also because of the more complex forms that this 

ME can take. In particular, we have shown that in questions that involve ordering and 

dating event histories such as unemployment, different forms of ME arise, which render 

the classical ME framework inadequate. Finally, we have pointed out that some forms of 

ME such as over-reporting spells of unemployment or FN, could be expected to have a 

bigger effect in EHA models for multiple spells than when only single spells are 

considered.  

 

  4. Literature Review 

According to the research design used, we can identify two main groups of studies which 
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have assessed the impact of ME in EHA. These can be analytical or empirical. The 

former imply tracing out the impact of ME in EHA models algebraically. However, 

because of the greater complexity of EHA models the number of settings explored is 

much more limited than for the case of linear models. In fact, until the 1990s research 

was concentrated on classical ME affecting covariates in the PH Cox model. Some 

examples are Prentice (1982) and Nakamura (1992) who presented an analytical 

development of the bias found in the parameter estimates of PH Cox models with 

classical ME in the covariates. In this context, both authors found attenuation bias in all 

the regression coefficients. 

The only studies that have explored analytically the impact of ME on the response 

variable in EHA models are the working papers by Augustin (1999) and Dumangane 

(2007). They used AL Weibull models and assumed classical multiplicative errors 

affecting the recall of durations. In this case ME in the response was found to produce an 

attenuation bias in the regression coefficients. However, this particular setting does not 

account for other types of errors observed in retrospective questions on work histories, 

such as omission of spells, or misclassification of status (we examine this topic in detail 

in the next section). In addition, Augustin (1999) requires the assumption of no right 

censoring in the data and Dumangane (2007) assumes that the true duration and error 

distributions are independent. The set of assumptions used in these papers shows both the 

difficulty of studying the effect of ME in the response variable of EHA models 

analytically, and how the general expressions developed so far are not really 

representative of the problems found in retrospective data, which are prone to other types 

of ME besides mismeasured durations.  

Another group of studies assessing the impact of ME in EHA are those that have carried 

out an empirical analysis. These studies compare estimates derived from a model that 

uses prone to ME data against the estimates obtained from replicating the same model but 

using data free of ME. Korn et al. (2010) studied the effects of ME in a PH Weibull 

model by means of simulating multiplicative log-normal errors in the response. The 

authors found small downward biases in the hazard rate as long as the ME remains non-

differential and hazard rates relatively high. However, by simulating different levels of 

ME in the control and treatment groups, the authors also demonstrated that the degree of 
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attenuation augmented substantially when the ME was differential. 

Considering non-parametric models for discrete data Meier, Richardson and Hughes 

(2003) assess the bias in the regression coefficients produced by simulating different 

levels of non-differential FP and FN. The authors conclude that the bias is always toward 

the null, and that FPs induce greater bias in estimation of the cumulative distribution 

function and regression coefficients than FNs when the failure rate is low. Moreover, for 

this case of EHA (non-parametric models using discrete data), additional findings can be 

obtained from studies on the impact of misclassification in the response variable in more 

general models for categorical data. In this respect, Magder and Hughes (1997) show 

how a response variable subject to MC could generate bias in the regression coefficients 

of a logistic regression. Neuhaus (1999) derived general expressions for the magnitude of 

the bias due to MC in the response for different type of regression models for binary data 

(logistic, probit, complementary log-log). The authors found that ignoring response MC 

leads to attenuated covariate effects when the errors are independent of the covariates. 

However, when MC probabilities depend on covariates, ignoring these errors can lead to 

bias away from the null. 

An early attempt to look at the effect of retrospective ME in the response in EHA models 

was Holt, McDonald, and Skinner (1991). Here, the authors compared two AL Weibull 

models where duration of unemployment was regressed on age. A sample of durations 

was simulated and different types of differential and non-differential multiplicative ME 

was superimposed on them. A similar study was carried out for estimation of age at 

menarche. The comparison of free from ME with prone to ME models shown biases in 

the coefficient of age and in the baseline hazard function. A bias towards the null was 

found when the model of unemployment was used, while for the model of age at 

menarche that bias was in the opposite direction. In both studies the bias increased when 

the ME was correlated with age (the covariate). In addition, the baseline function was 

always underestimated. 

Skinner and Humphreys (1999) used the example of age at menarche with no right-

censored cases presented in Holt et al. (1991) but trying different types of ME. The 

authors simulated different types of non-differential errors (additive vs multiplicative, 



24 

homoscedastic vs heteroskedastic, in different combinations) on both the durations in 

unemployment and for age at menarche. Their findings proved that under the assumption 

of no censoring, the regression coefficients of a Weibull model are approximately 

unbiased when MEs affecting spells are independent of each other, of the spell durations 

and of the covariates. The estimator of the shape parameter that determines the duration 

dependence of the hazard is, however, biased. The authors traced the effects analytically 

and noted that if ME is related to covariates then the estimators of the corresponding 

coefficients are likely to be biased. 

These last two studies contribute to the understanding of the effect of ME affecting the 

response variable in duration models, however, just like the studies of Augustin (1999), 

Dumangane (2007), and Korn (2010), they do not consider the fact that ME also takes the 

form of omitted spells and misclassified status, hence their studies do not entirely reflect 

the consequences of using retrospectively reported work histories. 

Other interesting studies that represent the effect of retrospective ME more closely are 

Peters (1998) and Jäckle (2008). The former compares survey data captured from 

prospective (questions measuring current states) and retrospective questions on different 

life-cycle events, time to first marriage, and time to first divorce. The durations of the two 

events are specified using a PH Weibull model. The regression coefficients for the models 

that were run on the retrospective data differ only slightly with respect to the ones 

obtained using prospective data. Jäckle (2008) used retrospective data and compared it to 

a gold standard (obtained from the “Improvement of Survey Measurement of Income and 

Employment” study). The author found that ME in the reporting and dating of receipt of 

unemployment benefits attenuated both the duration dependence and the regression 

coefficients from a Weibull model. The recall period used by the retrospective question 

was four months though, which is perhaps not long enough for the typical memory 

failures that characterize retrospective data to be seen.  

One last study that used the more common recall frame of one year was the one from 

Pyy-Martikainen and Rendtel (2009). Here the authors compared data derived from a 

retrospective question on work status against a gold standard obtained from the Finnish 

register of unemployment. PH Cox and Weibull models for unordered repeated events 
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were specified for the duration of unemployment and both attenuation and augmentation 

bias were found in the regression coefficients. None of these biases changed the survey 

estimates by more than 30%, and they were found in the same direction and similar 

magnitude for both the Cox and Weibull models. Moreover, the comparison of the Cox 

and Weibull models shows that the baseline hazard was more accurately estimated by the 

former. The survey baseline hazard from the Weibull model is nearly constant while the 

register baseline hazard shows positive duration dependence leading to erroneous 

conclusions about the duration dependence; whereas the Cox baseline hazards from 

survey and register both display positive duration dependence.  

The authors also studied some interesting extensions; first, they discretized the duration 

data and specified a cloglog model; second, they reran the PH Cox models but using a 

cause-specific frame which only considered spells from unemployment to employment. 

The results for these two settings were again very similar to what was obtained before; 

some of the bias was accentuated for the repeated spells models but their directions were 

still the same. 

In summary, it seems that when the response variable of EHA models, regardless of how 

it is defined (duration logs, hazard rates, or person period cases), is affected by non-

differential ME, the regression coefficients of the model are attenuated. On the other 

hand, when the ME is associated with some of the explanatory variables, the direction of 

the bias in the coefficients cannot be anticipated. Finally, because of the complexity of 

tracing the impact of ME in EHA models analytically, more empirical studies using 

validation datasets are necessary in order to assess both the peculiarities of retrospective 

ME and the consequences of these types of errors. Currently we are only aware of Jäckle 

(2008), and Pyy-Martikainen and Rendtel (2009). 

 

5. Data 

The data we use has been obtained from the “Longitudinal Study of the Unemployed” a 

research project designed by the Swedish Institute for Social Research (SOFI) at 

Stockholm University, directed by Sten-Ake Stenberg, and with the collaboration of the 
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register of unemployment (PRESO
9
). This register provided individual-level data on the 

work status of the participants of three surveys, run in 1992, 1993 and 2001. The three 

surveys are relatively similar with respect to the composition of both the sample of 

participants and the questionnaire. The target sample was composed of subjects registered 

as unemployed on 28
th

 February 1992 from ages 25 to 55. 

In this study we use data derived from a retrospective question on work status from the 

1993 survey. This question uses an event-occurrence framework; Lawless (2003) coined 

this term to define questions where events are asked to be reported in order of occurrence 

indicating the particular status, and their dates of start and end. In particular the question 

reads as follows: 

“Which of the alternative answers on the response card best describes your main activity 

the first week of 1992? When did this activity start? When did it end?
 10 

 

Which was the subsequent main activity? When did this activity start? When did it end?
 
 

In order to simplify the observation scheme we set the beginning of the window of 

observation at February 28
th

 and only consider subjects who started from a state of 

unemployment in both the register and the survey. This could be considered the most 

sensitive approach to follow for researchers who only had access to survey data. That is, 

in order to reduce the impact of ME, and making use of what is known regarding the 

sample design, it could be expected that subjects who appeared to have misclassified their 

work status on 28
th

 February are discarded. 

Under this restriction our sample shares the structure seen in state-based samples (Holt, 

McDonald and Skinner, 1991), where the sample frame is created out of individuals who 

are known to be in a particular state and mimics the scheme used in the examples in 

Section 3.1. Our final sample size captures 381 individuals (out of a total of 532 captured 

by both survey and register) and the window of observation encompasses spells from 

28/2/92 to 30/03/93, where the ending date represents the earliest day interviews were 

taken. Right censoring is present in both datasets.  

The explanatory variables in the models considered here are age, experience, and their 

                                                 
9
 PRESO is a register from the Swedish employment office (Arbetsmarknadsstyrelsen). 

10
 This and the following quote are translations from the original in Swedish. 
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interaction term. Experience captures self-reported levels of experience in the type of 

work that the subject applied for on a scale with three levels (low, medium, and high). 

Both variables are drawn from the register; the value for age is taken in January 1993, 

while for experience the mean of the monthly reported levels in 1992 is used. Given that 

age is an important variable in the register the probability that it is prone to ME is very 

low. This is different for experience since it is a self-reported value. However, in our 

analysis we assume that both of them are free of ME. In our sample the mean age is 37 

and the standard deviation 8.8, while for experience these are 2.59 and .60 respectively. 

Finally, regarding these two variables the ME can be considered non-differential since the 

Spearman correlation coefficients for the misclassification of person-day observations 

with age and experience were .01 and .03, respectively. 

 

6. Results 

In order to assess the impact of retrospective ME affecting the response variable in EHA 

models we use a design similar to Jäckle (2008) and Pyy-Martikainen and Rendtel 

(2009). We specify EHA models using duration of spells of unemployment derived from 

the retrospective question presented in the previous section and compare their estimates 

to the ones that are obtained by specifying the same type of models, for the same 

subjects, time-frame, and explanatory variables, but using durations derived from 

PRESO, the Swedish register of unemployment. This register is assumed to be a gold 

standard; consequently differences in the estimates of the models using survey data with 

respect to those obtained using register data are understood as evidence of the impact of 

ME. 

For the sake of completeness we analyse the effect of ME on four different models. These 

are: an AL Weibull and an AL exponential representing parametric models, a PH Cox 

from the semi-parametric models, and a PO logit representing non-parametric models. In 

addition, each of these models is analysed for single and repeated events. The latter are 

specified using marginal models, except for the PO logit, which is also explored using a 

RI specification.  
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We use four measures to assess the differences found in the regression coefficients when 

the models are specified using the survey and the register data. The simplest of the four is 

the bias, calculated as the difference between the regression coefficient obtained from the 

model using survey data and the same obtained using register data,  

𝐵𝐼𝐴𝑆 =  �̂�𝑠 − �̂�𝑟                                                          (14) 

where s stands for survey and r for register. A second measure particularly useful for 

making comparisons between models and between explanatory variables that use 

different scales for their regression coefficients is the relative bias,  

𝑅. 𝐵𝐼𝐴𝑆 =
|(�̂�𝑠 − �̂�𝑟)100|

|�̂�𝑟|
                                                (15) 

In order to take into account impacts on the precision of the estimates we also use the 

root mean squared error, which is the square root of the sum of the squared bias and the 

variance of the regression coefficient obtained from the survey, 

𝑅𝑀𝑆𝐸(�̂�𝑠) = √𝑀𝑆𝐸(�̂�𝑠) = √𝐸[�̂�𝑠 − �̂�𝑟] = √𝑉𝑎𝑟(�̂�𝑠) + (𝐵𝐼𝐴𝑆)2        (16) 

Finally, in order to facilitate comparisons between models in terms of the RMSE, we also 

use the relative root mean squared error, 

𝑅. 𝑅𝑀𝑆𝐸 =
(𝑅𝑀𝑆𝐸(�̂�𝑠) − 𝑅𝑀𝑆𝐸(�̂�𝑟)) 100

𝑅𝑀𝑆𝐸(�̂�𝑟)
                               (17) 

6.1. Impact on EHA Models for Single Events 

We start the analysis of the impact of ME in EHA by looking at the descriptive statistics 

of the first spells of unemployment. In this part of the analysis the sample used contains 

381 subjects and spells, in both the register and the survey datasets. Figure 4 below 

shows the Kaplan-Meier estimate (defined in equation 2) of the survivor functions for the 

registered and reported time in unemployment. The two datasets show a similar path for 

the first 30 days; from that point until about day 100 the two measures diverge due to an 

accelerated failure rate in the survey; from then on the two survivor functions behave 
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roughly similarly and the gap between them is maintained. At the end of the window of 

observation 35% of the spells of unemployment in the register, 133 in total, were right-

censored, whereas in the survey this was only 6% of the sample, 23 in total.  

Figure 4. Survivor function for the register and survey data 

 

Measures of central tendency for the registered and reported durations also show 

substantial differences. These are included in Table 1 together with their standard 

deviations.  

Table 1. Descriptive Statistics of the Unemployment Durations 

 Mean Median Std. Dev. 

Register 241 253 145 

Survey 136 92 113 

 

The mean duration in the register is 241, while the median is 253 days. In the survey 

these figures were 136 and 92, respectively. The higher median than the mean in the 

register indicates that the probability density function of durations is skewed to the left, 

whereas the opposite can be deduced for the distribution of durations from the survey. On 

the other hand, measures of dispersion are similar. These features can be seen graphically 

in Figure 5, where the probability density functions for spells of unemployment in the 

register and survey data are plotted. 
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Figure 5. Probability density function of single spells 

 

Given the three types of ME affecting retrospectively reported work histories presented in 

Section 3.1 (miscounting, mismeasurement, and misclassification), and the setting 

considered here, where every subject starts from the same category (unemployed) and 

only first spells are contemplated, we conclude that the differences in the survivor 

functions are mainly due to mismeasurements. In particular, spell lengths of 

unemployment are under-reported in the survey. As we show in Figure 2, miscounting in 

the form of omitted spells would show longer spells of unemployment in the survey due 

to the artificial link of current to future spells of unemployment, yet, the exploratory 

analysis shows the opposite effect, a shortening of durations. Finally, the possibility that 

the survey data contain misclassified cases is ruled out since cases starting from a 

different status were discarded and multiple spells are not considered in this first part of 

the analysis.  

The impact of using this prone to error data in EHA models is analysed next. A separate 

subsection is included for each family of EHA models, and at the end their relative 

performance in the presence of ME is assessed.  

6.1.1. Impact on the Accelerated life-time Weibull and Exponential Models 

In Tables 2 and 3 below we show the results obtained when comparing the AL Weibull 

models using register and survey data. In the model using the register data the main 

effects for both age and experience are negative and statistically significant, while their 

interaction effect is also significant but positive. So, considering the main effects of age 
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and experience, the older and more experienced the subjects the longer it takes to make a 

transition out of unemployment. However, this claim is nuanced by the positive 

interaction term, which indicates that subjects who are both old and highly experienced 

make that transition quicker.  

Considering the impact of ME, the first result to note is the attenuation of all the 

regression coefficients as a consequence of using survey data. It can be argued that 

attenuation bias represents the least bad type of bias since it only buffers the estimated 

effect size, therefore leading to type II errors (Korn et al. 2010). However, the substantial 

size of the biases found here makes them non-negligible. Except for the constant term, all 

the regression coefficients are not statistically significant when survey data is used. 

Furthermore, the coefficient for age changes sign and becomes positive. Standard errors 

(SE henceforth) of the regression coefficients have also been underestimated, although 

this is to be expected given the attenuation of the regression coefficients, which now 

represent smaller effects.  

Table 2. Single event AL Weibull model using register and survey data* 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age -.087 -.163 -.012 .039 

Register 

Experience -1.38 -2.38 -.38 .51 

Age*Exp .038 .010 .065 .014 

Constant 9.08 6.34 11.81 1.40 

𝛼 .98 .88 1.10 .05 

LR Chi
2
 (3) 11.34    

 Age .001 -.055 .058 .029 

Survey 

Experience -.09 -.835 .645 .377 

Age*Exp .001 -.019 .022 .010 

Constant 5.07 3.06 7.07 1.02 

𝛼 1.11 1.02 1.21 .05 

LR Chi
2
 (3) .98    

*Here and in the rest of the tables estimates in bold indicate that they were significantly different from zero 

at the 5% level. 

Table 3 shows the four measures set out at the beginning of this section to assess the 

impact of ME. The relative biases in the coefficients of the explanatory variables age and 
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experience are very large, 101.1% and 97.4%, respectively. These results indicate that the 

size of the bias is roughly the size of the true estimate. The interaction effect suffers from 

a similar effect, with a R.BIAS of 93.1%; it is only more moderate in the constant term, 

44.2%.  

Table 3. Bias in the single event AL Weibull model 

 BIAS R.BIAS RMSE R.RMSE 

Age .088 101.1% .093 137.6% 

Experience 1.29 93.1% 1.34 161.9% 

Age*Exp -.037 97.4% .038 173.8% 

Constant -4.01 44.2% 4.14 196.6% 

𝛼 .130 13.3% .139 178.6% 

 

The impact of ME on 𝛼, the parameter used in the Weibull model (see equations 3 and 4) 

to estimate the shape of the baseline hazard function, might seem relatively unimportant 

compared to what has been seen in the other coefficients since the true estimate is .98 and 

the one found using survey data is 1.11. However, as Skinner and Humphreys (1999) 

point out, in some settings, there is interest not only in the size of this estimate but also in 

the distinction between 𝛼<1, 𝛼=1, and 𝛼>1, or equivalently between a decreasing, 

constant or increasing hazard function respectively. For example, Chesher et al. (2002) 

anticipate that in the analysis of unemployment durations it is well known that 

uncontrolled across-individual heterogeneity in hazard functions can lead to the 

appearance of negative duration dependence. In our case we observe the opposite effect 

when the model is specified using survey data, while the model using register data show 

no effect in either direction. Here the impact of ME differs from what we have seen for 

the rest of coefficients, indicating a positive effect where there is none, which represents 

a type I error. 

Figures 6 shows the shapes of the baseline hazard functions for the register and the 

survey data. In spite of the different signs of the slopes, it is worth noting that the shape 

of the baseline hazard function from the survey data mimics quite well the one from the 

register data. However, this result could be expected. Due to the constraints of the 

Weibull model, where only one shape parameter is used, baseline hazard functions are 
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bound to be either monotonically increasing or decreasing. 

Figure 6. Weibull baseline hazard function for the register and survey data 

  

Another characteristic to note from Figures 6 is the flatness of both hazard functions, 

which are almost constant across the window of observation. This feature suggests the 

possibility of using a simpler model to parameterize the baseline hazard function. In 

particular, the AL exponential (defined in equation 6) appears to be a good alternative 

because it assumes a constant baseline hazard function. 

A likelihood ratio test between the two models using register data (taking the exponential 

model to be nested in the Weibull) corroborates this intuition. The test shows that the 

difference in deviances (.13) for 1 degree of freedom is not statistically significant (p-

value=.72). The better specification of the exponential model can also be concluded from 

the lower SEs for age, experience and the constant term. Results are shown in Tables 4 

and 5. 
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Table 4. Single event AL Exponential model using register and survey data 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age -.087 -.161 -.012 .038 

Register 

Experience -1.37 -2.35 -.38 .50 

Age*Exp .037 .010 .064 .014 

Constant 9.04 6.36 11.72 1.37 

LR Chi
2
 (3) 11.47    

 Age -.003 -.063 .062 .032 

Survey 

Experience -.11 -.94 .71 .42 

Age*Exp .002 -.021 .025 .012 

Constant 5.08 2.85 7.32 1.14 

LR Chi
2
 (3) .81    

 

In addition, the exponential model seems to perform marginally better at buffering the 

effects of ME; at least in terms of R.BIAS which is now lower for all the coefficients. It 

is possible that parametric EHA models are more sensitive to ME in the response when 

the baseline hazard function is misspecified.  

Table 5. Bias in the single event AL Exponential model  

 BIAS R.BIAS RMSE R.RMSE 

Age .084 96.6% .090 136.5% 

Experience 1.25 91.7% 1.32 163.9% 

Age*Exp -.035 94.6% .037 164.3% 

Constant -3.95 43.7% 4.12 200.9% 

 

6.1.2. Impact on the Proportional Hazards Cox Model 

We now turn to the PH Cox model (defined in equation 7). Estimates from the PH Cox 

model are often presented on a hazard rate scale, however, here we show the 

untransformed coefficients to facilitate comparisons between models.
11

 Tables 6 and 7 

below show the results of the PH Cox model using the register and survey data.  

 

                                                 
11

 That is we report �̂�𝑖 instead of exp (�̂�𝑖) 
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Table 6. Single event PH Cox model using register and survey data* 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age .086 .011 .160 .038 

Register 

Experience 1.35 .36 2.33 .50 

Age*Exp -.037 -.064 -.010 .014 

LR Chi
2
 (3) 11.03    

 Age .002 -.061 .065 .032 

Survey 

Experience .13 -.69 .95 .42 

Age*Exp -.002 -.025 .020 .012 

LR Chi
2
 (3) .77    

*Compared to the AL models signs of regression coefficients are now reversed since an increase in the 

hazard corresponds to a decrease in the expected (log-) duration, and vice-versa. 

Results regarding the impact of ME on the PH Cox model show a very similar picture to 

what was found in the previous models. The regression coefficients are again heavily 

attenuated. Interestingly, the PH Cox model performs slightly better in terms of RMSE. 

This is surprising given the higher precision obtained from parametric models when they 

are correctly specified. This result suggests that, in spite of using an optimal parametric 

form for the true durations (from the register data), the baseline hazard function will 

probably change when there is ME, and less restrictive models such as the PH Cox are 

then a better choice.  

Table 7. Bias in the single event PH Cox model 

 BIAS R.BIAS RMSE R.RMSE 

Age -.084 97.7% .090 136.5% 

Experience -1.22 90.5% 1.29 157.2% 

Age*Exp .035 94.6% .037 164.3% 

 

The Cox baseline functions for the survey and register data are displayed in Figure 7. 

These are calculated using STATA 11, where the baseline hazard ratio at each transition is 

estimated first, and then kernel density estimation is used to smooth them. From the 

comparison of the two functions it can be seen that the former is overestimated, just like 

it was in the Weibull model. Also, now that the baseline function is freely estimated, we 

can confirm that the baseline function from the register data is truly constant, which 
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corroborates the adequacy of the exponential model as opposed to the Weibull one. In 

addition, we can see that when using survey data there are a couple of bumps (at about 

day 220 and 330), which could lead to slightly misleading time-dependence inferences. 

These shocks were not captured by the exponential nor the Weibull baseline functions for 

survey data because of their parametric restriction. However, since the Cox baseline 

function using survey data remains roughly constant when the Weibull one shows a 

positive slope, we might say that the former reflects the true function more faithfully. 

Figure 7. Cox baseline hazard function for the register and survey data 

  

So, when considering which model to use in the presence of ME in the response variable, 

we agree with Pyy-Martikainen and Rendtel (2009) in saying that the flexibility of the 

Cox model makes it a better choice than a parametric approach. The only exception to 

this would be where the true baseline hazard function can be properly approximated by a 

parametric form, as was shown for the case of the AL exponential model. In those cases 

the restrictive form of a parametric function could be beneficial. However, knowing the 

true baseline function conditional on a set of explanatory variables represents a major 

challenge, and it becomes even harder in the presence of ME. 

6.1.3. Impact on the Proportional Odds Logit Model 

Finally we review the effect of retrospective ME in the response variable on a model 

from the non-parametric family, a PO logit model (defined in equation 8). Here, a series 

of temporal dummies are included in the model in order to specify the baseline logit-

hazard function. Each of the dummy variables represents a period of the time-frame, in 

what is called a piecewise-constant hazards model. This is a reasonable solution when 
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coarse time units relative to the window of observation are used. However, for our case 

this raises some complications. First, the degrees of freedom are drastically reduced from 

the inclusion of 394 dummy variables, one for each day. Second, some of the days 

capture the same number of failures, which produces a problem of perfect 

multicollinearity in the model. In order to prevent these two problems we used temporal 

dummies that aggregated failures by weeks. 

The results for the PO logit model are shown in Tables 8 and 9. The dummy variables 

representing the 56 weeks considered in the window of observation are not included in 

the tables for reasons of space, but they are shown in Figure 8 below as the dots 

composing the baseline hazard functions. In addition, the sample size is now 89,842 

person-day cases in the register, and 50,366 in the survey
12

.  

Table 8. Single event PO logit model using register and survey data 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age .086 .012 .161 .038 

Register 

Experience 1.36 .38 2.35 .50 

Age*Exp -.037 -.064 -.010 .014 

Constant -9.41 -12.24 -6.57 1.45 

LR Chi
2
 (61) 77.29    

 Age .002 -.061 .065 .032 

Survey 

Experience .14 -.69 .97 .42 

Age*Exp -.003 -.025 .020 .012 

Constant -5.76 -8.09 -3.42 1.19 

LR Chi
2
 (61) 161.33    

 

The outcomes of the two models are again very similar to what was found in the previous 

EHA specifications. The expected lower precision due to the 56 additional parameters 

that needed to be estimated to reproduce the baseline hazard function was not as 

problematic as first thought. In fact, the same SEs as in the AL exponential and the PH 

Cox were obtained for age, experience, and the interaction effect when the register data is 

                                                 
12

 The two datasets differ in their sample size because of the transformations required in the specification of 

EHA models for discrete data; from a dataset capturing one case for each subject to another capturing 

person-week cases. 
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used. 

Table 9. Bias in the single event PO logit model model  

 BIAS R.BIAS RMSE R.RMSE 

Age -.084 97.7% .090 136.5% 

Experience -1.22 89.7% 1.29 157.0% 

Age*Exp .034 91.9% .036 157.5% 

Constant 3.65 38.8% 3.84 165.4% 

 

Because of the effect of aggregating days into weeks, both baseline hazard functions 

differ from the PH Cox ones, in particular the function for the register data is not 

constant. Also, unlike in the previous cases where the effect of ME was expressed as a 

higher baseline function, here what we see is more volatility between time-periods 

(weeks), resulting in a more jagged baseline function. 

Figure 8. PO baseline hazard function for the register and survey data*,** 

  
*The hazard is measured in odds ratios. 

**Values for the first week were omitted to prevent multicollinearity in the model.  

6.1.4. Summary of the Impact on Models for Single Spells 

In this section we have seen that the consequences of using retrospective data in EHA 

models for single spells are not negligible and are very similar across different models. 

Strong attenuation effects were found in all the regression coefficients. In Table 10 we 

summarise these results by taking the average R.BIAS and R.RMSE over the coefficients 
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of age, experience and their interaction term
13

, for each of the four models studied. 

Table 10. EHA models’ performance in the presence of retrospective ME  

 R.BIAS R.RMSE 

AL Weibull 97.2% 157.8% 

AL exponential 94.3% 154.9% 

PH Cox 94.3% 152.7% 

PO logit 93.1% 150.4% 

 

In addition to the strong attenuation effects, illustrated by measures of R.BIAS not lower 

than 93%, the similarity of the effects across models is striking. None of the models 

seems to buffer the effects of ME better than the others. In fact, the between model 

variability in terms of R.BIAS and R.RMSE is 1.8% and 3.1% respectively, while the 

average effect within models is 94.7% for the former and 153.9% for the latter. 

The analysis presented so far has focused on assessing the impact of ME in each model 

separately. However, it could be argued that some EHA models are superior to others for 

the type of data that we are using here. For example, non-parametric models like the PO 

logit are recommended when there are fewer time units, whereas here we have seen that 

the exponential model is a better specification than the Weibull model. In order to assess 

which model performs better in the presence of ME we need to compare them against a 

common benchmark. That is, the use of a common benchmark allows us to analyse not 

only comparisons between the same models using error free and prone to error data, but 

also comparisons between different models when prone to error data is used.  

Here, we use results from the PH Cox model based on register data as that benchmark. 

There are both empirical and theoretical reasons for this choice. First, the PH Cox model 

has, along with the AL exponential and the PO logit, the lowest SEs in their regression 

coefficients (see Tables 4, 6 and 8). Second, since the baseline hazard function is freely 

estimated it cannot be misspecified. Finally, tied events, a flaw affecting models for 

continuous time such as the Cox model, are not a major issue here. The window of 

                                                 
13

 In order to make comparisons possible we excluded the constant term from this analysis since the PH 

Cox model does not estimate it.   
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observation covers 395 days, which makes the time-unit approximately continuous, and 

rarely do two spells or more end on the same day. 

This process to assess the relative impact of ME on the different EHA models implies the 

assumption that the Cox model using register data produces the true estimates. The 

comparisons can be formally defined by equations 15 and 17, where �̂�𝑟 is now 

substituted by �̂�𝑟,𝐶𝑜𝑥.  

Table 11. EHA models’ performance compared to the PH Cox  

 R.BIAS R.RMSE 

AL Weibull 97.1% 161.6% 

AL exponential 94.2% 154.7% 

PO logit 93.0% 150.5% 

 

Results are shown in Table 11 above, where it can be seen that the PO logit performs 

marginally better than the rest. It is also interesting to note that the AL Weibull offers the 

worst performance. These results reinforce the idea put forward when discussing the 

effect of ME in the baseline function, EHA models that do not make use of a restrictive 

parametric form seem to do better at buffering the effect of ME in the response variable. 

This seems to be especially true when the parametric form used is not the most 

appropriate, as it is shown by the worse performance by the Weibull than the exponential 

model.  

In the first part of the analysis we were interested in assessing the relative performance of 

different EHA models in the presence of retrospective ME, when only first spells are 

considered. We proceed with the analysis by looking at the implications derived from 

using retrospective data for the same EHA models as before but when multiple spells are 

considered. 

6.2. Impact on EHA Models for Repeated Events 

The consideration of repeated spells makes both the specification of the durations of 

unemployment, and the types of ME affecting them, more complex. As was seen in 
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Section 3.1 models for repeated spells can also include both FP and FN cases. This 

remains valid regardless of the restriction that we used to study only cases which are 

known to start from unemployment in both the register and the survey. Similarly, 

problems of miscounting are more complex than before. In fact, omitted and/or over-

reported spells make the sample size in the survey differ from the one in the register. In 

the analysis presented in the previous section both the register and survey data set 

contained a sample size of 381 spells. Now, from the inclusion of repeated events and as 

a consequence of miscounting, there are 559 spells of unemployment in the register, and 

706 in the survey. Figure 9 below shows a histogram for the number of registered and 

reported spells. 

Figure 9. Histogram of the number of spells in the register and the survey 

 

The mean duration of spells in the register is 204 days with a standard deviation of 140, 

while in the survey the mean duration was 116 days, and the standard deviation 97. These 

mean durations are lower than the ones in Section 6.1, which implies that the additional 

spells included in this setting are shorter than the first ones.  

Figure 10 displays the probability density functions for the spells of unemployment in 

both the survey and the register. The density function for the survey peaks for spells 

lasting around 50 days, whereas the register function has two peaks, one at day 50 and 

another where spells are right-censored. Similar shapes were found in Figure 5, where the 

probability density functions for the case of single spells was shown. However, it seems 

that now the register and survey functions have converged, which might anticipate a 
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lower effect of ME. On the other hand, an analysis based solely on shapes of the 

probability density functions can be misleading, since these functions compare 

proportions, that is, they do not take into account the higher number of spells recorded in 

the survey, which might also be having an effect. 

Figure 10. Probability density function of repeated spells 

 

In order to make a better graphical assessment of the impact of ME in EHA models for 

repeated events we use a scatter plot capturing the number of subjects unemployed at 

each period of the window of observation (Figure 11). The first part of the graph shows a 

similar picture to that of the survivor functions from Figure 4, the rates of unemployment 

for both the register and the survey fall in a similar pattern for the first 30 days, 

subsequently the survey shows a sharper decay, widening the difference between the 

survey and register rate more than in the single spells’ setting. In addition, after 

approximately day 90, when some of the first spells have failed and repeated ones are 

entering the study, the two functions remain relatively stable and they even show both 

growth and certain convergence. 
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Figure 11. Number of subjects unemployed across the window of observation 

 

The mild convergence between the two functions at the second half of the timespan can 

only be due to the higher number of cases re-entering unemployment in the survey, since 

as we saw before the mean length of spells is shorter when considering repeated events, 

indicating that the first spells are longer. In Figure 12 we plot survivor functions for the 

second spells found in the register and the survey; here we observe an accelerated failure 

rate in the survey, similar to what was found in Figure 4 for the case of first spells. The 

survivor function for the register is based on 159 spells with an average length of 131 

days, while the one from the survey had 238 spells with an average length of 101 days. 

Unlike the first spells, these start at different times of the window of observation, and 

because of that censored cases are seen at different times for the survey and the register.  

Figure 12. Survivor functions restricted to second spells 
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In what follows we assess the impact of using the survey dataset on different EHA 

models when repeated events are considered. In all of the following models we assumed 

that the spells of unemployment were of the same type and unordered. That is, spells of 

unemployment were not treated differently because of their location in the window of 

observation or their position with respect to their order of appearance. To account for 

within subject dependencies we use robust SEs. Specifically we use the sandwich 

estimator, which is the default option used in STATA version 11. This choice of model for 

repeated events replicates what has been used before in the literature on labour market 

studies (Gash, 2008; Pyy Martikainen and Rendtel, 2009). Finally, the impact of ME in 

the correlations of spells within subjects is briefly explored at the end by comparing RI 

PO logit models. As before, we start with the parametric family of EHA models.  

6.2.1. Impact on the Accelerated life-time Weibull and Exponential Models 

The Weibull model for the register data is now slightly different than it is for the single 

spells case; all the regression coefficients remain significant, while age, experience, their 

interaction, and all the SEs are now smaller (see Table 12 below). The lower effect size of 

the explanatory variables can be interpreted as the length of second and subsequent spells 

being less associated with age, experience or their interaction effect, while the smaller 

SEs represent the improvement in precision after an increase in the sample size.  
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Table 12. Repeated events AL Weibull model using register and survey data 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age -.084 -.150 -.017 .034 

Register 

Experience -1.22 -2.10 -.34 .45 

Age*Exp .033 .009 .058 .012 

Constant 8.91 6.51 11.3 1.22 

𝛼 1.01 .92 1.10 .04 

LR Chi
2
 (3) 8.43    

 Age -.005 -.054 .043 .025 

Survey 

Experience -.15 -.77 .47 .32 

Age*Exp .003 -.015 .020 .009 

Constant 5.36 3.66 7.05 .86 

𝛼 1.10 1.01 1.19 .04 

LR Chi
2
 (3) .78    

 

Table 13 summarizes the impact of ME in this model. Similar to the case of single spells 

all the coefficients are attenuated, and they are not significant. The impact in terms of 

R.BIAS is slightly smaller than for the single spells model for all coefficients, whereas in 

terms of R.RMSE the effect is lower for age and the constant and bigger for experience 

and the interaction term The similarity of the results when compared to the single spells 

model is rather unexpected, since in Section 3.1 we anticipated that the forms of ME 

could be more complex in a multiple spells design.   

Table 13. Bias in the repeated events AL Weibull model  

 BIAS R.BIAS RMSE R.RMSE 

Age .08 94.0% .083 143.7% 

Experience 1.07 87.9% 1.12 149.5% 

Age*Exp -.03 90.9% .031 161.0% 

Constant -3.56 39.9% 3.66 199.3% 

𝛼 -.090 8.2% .088 119.1% 

 

Finally, unlike we saw in the previous section, the shape parameter is now significant and 

positive when survey data is used. However, its coefficient is still very close to 1, which 

let us think again of the appropriateness of using an exponential specification. Tables 14 
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and 15 show the results for the AL exponential model
14

. 

Table 14. Repeated events AL Exponential model using register and survey data 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age -.084 -.151 -.017 .034 

Register 

Experience -1.22 -2.11 -.34 .45 

Age*Exp .034 .009 .058 .012 

Constant 8.93 6.53 11.33 1.23 

LR Chi
2
 (3) 8.40    

 Age -.006 -.056 .043 .025 

Survey 

Experience -.16 -.80 .48 .33 

Age*Exp .003 -.015 .021 .009 

Constant 5.39 3.64 7.13 .89 

LR Chi
2
 (3) .71    

 

Results from the exponential model are very similar to the ones found in the Weibull 

model, with the exponential model performing slightly better for all the coefficients in 

terms of R.BIAS and R.RMSE, except for the interaction term. This result backs up the 

hypothesis that correctly specified models for the true data perform better in the presence 

of ME. In addition, compared to the model for single spells, the R.BIAS and R.RMSE 

show the milder impact seen for the Weibull model, supporting the intuition that the use 

of multiple spells does not necessarily implies a stronger impact of ME. 

Table 15. Bias in the repeated events AL Exponential model  

 BIAS R.BIAS RMSE R.RMSE 

Age .078 92.9% .082 140.9% 

Experience 1.07 87.0% 1.11 147.7% 

Age*Exp -.031 91.2% .032 169.0% 

Constant -3.54 39.7% 3.65 198.0% 

 

6.2.2. Impact on the Proportional Hazards Cox Model 

Results for the PH Cox model are included in Tables 16 and 17. The estimates for both 

                                                 
14

 The use of the exponential model is again justified by a likelihood ratio test (p-value=.86) used to 

compare it against the Weibull specification. 
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the model using register and survey data are again very similar to what has been seen in 

this section for the case of the AL Weibull and exponential.  

Table 16. Repeated events PH Cox model using register and survey data 

 
Regression 

Coefficient 
95% Confidence Interval 

Standard 

Error 

 Age .083 .017 .149 .034 

Register 

Experience 1.21 .34 2.08 .45 

Age*Exp -.033 -.057 -.009 .012 

LR Chi
2
 (3) 8.32    

 Age .007 -.044 .059 .026 

Survey 

Experience .17 -.48 .84 .34 

Age*Exp -.003 -.022 .015 .009 

LR Chi
2
 (3) .76    

 

The impact both in terms of R.BIAS and R.RMSE is smaller than in the AL Weibull and 

exponential models from this section, reinforcing the idea that freely estimated EHA 

models perform better at buffering the effect of ME. In addition, compared to the PH Cox 

model for single spells, we can see here the same milder impact observed in the previous 

AL Weibull and exponential models for repeated events. 

Table 17. Bias in the repeated events PH Cox model 

 BIAS R.BIAS RMSE R.RMSE 

Age -.076 91.6% .080 136.2% 

Experience -1.03 85.5% 1.09 144.1% 

Age*Exp .030 90.9% .031 161.0% 

 

6.2.3. Impact on the Proportional Odds Logit Model 

In the estimation of the PO logit for the repeated events 110,563 and 82,599 person-day 

cases were used in the register and survey models respectively. Results for the PO logit 

are presented in Tables 18 and 19. Regression coefficients are similar to the ones found in 

the rest of the models from this section. The same applies to the SEs which, just as for the 

single spells, do not fall in spite of having to estimate the baseline function week by 

week. 
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Table 18. Repeated events PO logit model using register and survey data 

 
Regression 

Coefficient 

95% Confidence 

Interval 

Standard 

Error 

 Age .083 .016 .150 .034 

Register 

Experience 1.21 .32 2.09 .45 

Age*Exp -.033 -.057 -.009 .012 

Constant -9.26 -11.84 -6.68 1.32 

LR Chi
2
 (61)     

 Age .005 -.047 .056 .026 

Survey 

Experience .15 -.50 .81 .33 

Age*Exp -.002 -.021 .017 .009 

Constant -6.13 -8.07 -4.19 .99 

LR Chi
2
 (61) 207.7    

 

Unlike what we saw in the models for single spells, the impact of ME in terms of R.BIAS 

is now slightly larger than in any of the other models for repeated events. However, this is 

not the case when we measure the impact in terms of R.RMSE, which is very similar to 

what we have seen in the previous parametric models for repeated events. 

Table 19. Bias in the repeated events PO logit model 

 BIAS R.BIAS RMSE R.RMSE 

Age -.078 94.0% .085 141.8% 

Experience -1.05 87.4% 1.10 145.1% 

Age*Exp .031 93.9% .032 169.0% 

Constant 3.13 33.8% 3.28 149.3% 

 

6.2.4. Impact on the Random Intercepts Proportional Odds Logit Model 

Here, the effect of retrospective ME in a random effects model is explored. The specific 

model of study is a RI PO logit estimated using Markov chain Monte Carlo. This last 

model is estimated using MLwiN
15

, unlike the previous models where we used STATA. 

In order to assure that convergence was achieved and to reduce simulation error we used 

                                                 
15

 Although it was called from the STATA interface using the command runmlwin developed by Leckie and 

Charlton (2011). 
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5,000 iterations after burning-in another set of 5,000 iterations. Results are presented in 

Table 20 and 21 below. 

Table 20. RI PO logit model using register and survey data 

 
Regression 

Coefficient 

95% Credible 

Interval 

Standard 

Deviation 

Register 

Age .068 .036 .100 .018 

Experience 1.05 .62 1.43 .22 

Age*Exp -.029 -.039 -.017 .006 

Constant -8.81 -10.12 -7.41 .65 

Var(RI) .083 .002 .280 .077 

Bayesian DIC 4281.7    

Survey 

Age .010 -.010 .036 .013 

Experience .23 -.049 .552 .161 

Age*Exp -.004 -.014 .003 .004 

Constant -6.40 -7.45 -5.48 .518 

Var(RI) .017 .001 .093 .023 

Bayesian DIC 6308.7    

 

Compared to the previous PO logit model for repeated events all the coefficients from the 

fixed part of the model are lower when using register data, but higher for survey data. This 

smaller attenuation effect is manifested in the measures of R.BIAS which are now lower than 

in any of the previous models.  

Another distinctive result of using random effects as opposed to robust SEs to model the 

within subject’s episodes dependency is that the SEs, when using both register and survey 

data, are now substantially smaller, about half the size than before. This higher precision is 

more pronounced than the reduction of bias in relative terms, which makes the impact in 

terms of R.RMSE about twice the size than before, with the only exception of the RI 

variance. For this coefficient the reduction of the SEs is so large (70.1%) that makes the 

impact of ME in terms of R.RMSE appear negative.  
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Table 21. Bias in the RI PO logit model 

 BIAS R.BIAS RMSE R.RMSE 

Age -.058 85.3% .059 230.2% 

Experience -.826 78.3% .842 282.5% 

Age*Exp .025 86.2% .025 322.0% 

Constant 2.41 27.4% 2.46 278.1% 

Var(RI) -.066 79.5% .070 -9.2% 

 

The variance of the RI term is significant in both models but it is much smaller in the one 

using survey data. Precisely, in terms of R.BIAS, there is an attenuation of 79.5%. This result 

indicates that the between subjects unobserved heterogeneity decreases in the presence of 

retrospective ME. Similarly, it could be argued that the impact of ME makes work histories 

less distinguishable, or that the retrospective ME is not concentrated in the reports of a few 

subjects, but affects most of them.  

6.2.5. Summary of the Impact on Models for Repeated Spells 

As was the case for models using single spells, the coefficients for age, experience and 

their interaction effect were significant in all the models using register data and became 

non-significant when the survey data is used. We also observe very similar attenuation 

effects to what we saw in models for single spells. However, contrary to our hypothesis 

expecting more complex forms of MEs as a result of considering repeated events (Section 

3.1), we have found that the average R.BIAS is lower than before, in each of the models 

analysed.  

Similarly, the impact of ME in terms of R.RMSE for models considering repeated events 

is not higher than for the single spells case. The only exception in this respect is the RI 

PO logit model, which shows almost twice the impact than any other model. This is 

shown in Table 22, where the average results for age, experience and their interaction 

term are compared. Comparing  models for repeated events, it is interesting to note that 

the PH Cox comes the first and second in terms of R.RMSE and R.BIAS, respectively. 

The lowest impact in terms of R.BIAS comes from the RI PO logit. However, we have 

seen that this might be due to the smaller effects found when register data is used, which 

leaves less room for attenuation towards the null. 
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Table 22. EHA models’ performance in the presence of retrospective ME  

 R.BIAS R.RMSE 

AL Weibull 90.9% 151.4% 

AL exponential 90.4% 152.5% 

PH Cox 89.3% 147.1% 

PO logit 91.8% 160.5% 

RI PO logit 83.3% 278.2% 

  

In order to properly assess not only the impact of ME in each of the models, but which 

one performs better in the presence of ME, we need to make comparisons against a 

common benchmark. For that we use once more the PH Cox model based on the register 

data. This is the model less prone to problems of misspecification, and as we just saw the 

model that suffers the least when both R.BIAS and R.RMSE are contemplated. We 

present results from these comparisons in Table 23.  

Table 23 EHA models’ performance compared to the PH Cox  

 R.BIAS R.RMSE 

AL Weibull 90.88% 151.77% 

AL exponential 90.18% 153.28% 

PO logit 91.78% 161.48% 

RI PO logit 85.63% 91.50% 

 

Here, we see that the three models using robust SEs perform very similarly in terms of 

both R.BIAS and R.RMSE, which reinforces the finding from the previous section 

regarding the similarity of the impact of ME across models. That pattern is broken for the 

RI PO logit model, which on the one hand shows lower attenuation when survey data is 

used than the same PH Cox model, and on the other shows higher precision than any 

other model using survey data, which results in lower R.RMSE. 
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7. Conclusion 

In this paper we have explored the implications of using EHA models where the response 

variable is affected by ME derived from a retrospective question. Evidence of large 

attenuation biases in the regression coefficients is found across different EHA models. 

These findings go against the common belief that ME in the response variable only 

affects the SEs of the model’s estimates, and also contrast with what has been seen so far 

in the literature. 

In particular our results contrast with Skinner and Humphreys (1999), where after 

simulating classical multiplicative errors no bias was found in the regression coefficients. 

The difference between these and our results stems from the longitudinal component 

embedded in retrospective questions on work histories. The type of errors simulated by 

the authors can be used to replicate the ME processes found in simpler retrospective 

questions, e.g. number of spells of unemployment experienced in the last twelve months, 

or number of sexual partners in a lifetime. However, we have seen that when a 

longitudinal component is required - in our case, when spells need to be dated - the ME 

generating mechanisms might not be appropriately specified by the classical 

multiplicative model. 

Our findings also disagree with Pyy-Martikainen and Rendtel (2009), which is the most 

similar study in the literature since they compare retrospectively reported spells of 

unemployment with data from a register. The authors found both attenuation and 

augmentation biases affecting the regression coefficients. We argue that the mix of biases 

that they found might be related to the ME being associated with some of the explanatory 

variables. The ME analysed in our study was non-differential with respect to the two 

regressors that were used (age and experience), and the direction of the biases was always 

towards the null. Moreover, these results are consistent with all the other studies that we 

are aware of that have assessed the impact of non-differential ME in the response in 

EHA: Augustin (1999), Dumangane (2007), Korn et al. (2010), Magder and Hughes 

(1997), Meier et al. (2003), and Neuhaus (1999).  
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Another substantive difference between our results and those from Pyy-Martikainen and 

Rendtel (2009) is the bigger size of the biases found in our study. In Table 22 we showed 

that the average R.BIAS in the regressors of the Weibull model for multiple events was 

90.9%, whereas the biggest bias found in Pyy-Martikainen and Rendtel (2009) for the 

same model was 30% of the true estimate. These differences might be due to both the use 

of months as time-units in Pyy-Martikainen and Rendtel (2009), which limit the 

appearance of ME, and to the much bigger sample size both in terms of individuals 

(1,482) and window of observations (responses to five years were pooled), which reduced 

the share of cases that were right-censored. 

One original feature of our study is the assessment of different families of EHA models. 

We found very similar results for the four types of EHA models that were studied (AL 

Weibull, AL exponential, PH Cox and PO logit), which implies that the way the response 

variable capturing lifecourse events is defined (duration data, hazard rates, or person-

period cases) is not related to the effect of ME on the model estimates. In fact all the 

models performed similarly for the different comparisons carried out: when true data is 

used, when estimates of true data are compared against the ones obtained using survey 

data, when the Cox model is used as a benchmark, and for both the case of single and 

repeated spells. Perhaps the PO logit model showed the biggest differences. This might 

be due to the inclusion of temporal dummies which were discretized to capture weeks 

instead of days. 

Using the Cox model as a benchmark we found that the exponential model is less affected 

by ME than the Weibull both in terms of R.BIAS and R.RMSE and for both the case of 

single and multiple spells. It seems that parametric forms that are correctly specified for 

the true data might buffer the effect of ME better than when they are misspecified. 

Moreover, semi and non-parametric models perform similarly to the exponential model, 

even in terms of R.RMSE. This is an interesting result since parametric models, when 

correctly specified, are expected to obtain more precise estimates. Moreover, ascertaining 

the shape of the baseline hazard function is complicated, and in general, it could be 

expected that parametric forms will perform worse than we have seen here. Hence, when 

the shape of the baseline hazard function cannot be identified, as is the case in settings 
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that use durations measured with errors, the use of semi- and non-parametric forms are 

recommended. 

Similarly, here we have found that inferences about the time-dependency of the event 

derived from the PH Cox or the PO logit model are less misleading than those obtained 

from the AL Weibull model, which wrongly indicated that the probability of making a 

transition out of unemployment increased with time. This result corroborates Pyy-

Martikainen and Rendtel (2009), where the authors posited that freely estimated baseline 

functions offer better results than those which imposed a parametric form. An exception 

to this precept might be cases where the parametric form perfectly maps the form of the 

baseline function. This is what we observed here for the case of the AL exponential. 

However, in most cases, previous knowledge about shape of the baseline function 

conditional on a set of regressors is not available, let alone when the durations are 

affected by ME. Hence, for the estimation of time-dependencies in the event of duration 

data prone to ME, we recommend using semi-or non-parametric models. 

Comparisons of the effects of ME for single and repeated events specifications showed an 

average lower attenuation when multiple spells are considered. This result contrasts with 

our a priori expectations. We anticipated that more complex forms of retrospective ME 

would be found when repeated events are considered, which would make the impact of 

ME stronger than in the case for single spells.  

Finally, we explored the impact of ME in hierarchical models using a RI PO logit model. 

Here, the variance of the RI term was as strongly attenuated as all the other regression 

coefficients, indicating that the unobserved heterogeneity between work histories was 

diluted in the presence of retrospective ME. However, taking the estimates of the PH Cox 

model using register data as a benchmark, we found that the impact of ME is lower for 

the RI PO logit than for any other model, both in terms of R.BIAS and R.RMSE for all 

coefficients.  

In this study we have used data derived from a retrospective question on work histories 

for a period of 395 days, yet our findings could be generalized to other cases where 

retrospective data is used to derive different lifecourse events. In particular, this would be 

the case for events that, because of their relatively low saliency, can be subject to recall 
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errors in the form of mismeasuring, miscounting, and misclassification of spells in the 

same way as spells of unemployment are.  

However, more research is necessary since some of the findings presented here need to be 

tested. Augustin (1999) pointed at this area as an underesearched one in need of more 

contributions, “In contrast to its practical importance, ME has not yet attracted much 

attention in duration analysis.” (Augustin, p. 2, 1999); and this is something that Pyy-

Martikainen and Rendtel (2009) have recently confirmed “Despite the recognition of the 

existence of measurement errors in survey-based data on event histories, little is known 

about their effects on an event history analysis.” Pyy-Martikainen and Rendtel (2009, 

p.140). In particular we would like to extend our study to cases where the ME affecting 

the response variable in EHA is associated with the explanatory variables. Non-

differential ME can generate biases that are not necessarily towards the null, but it is not 

clear what are the levels of association that could cause a change in the direction of the 

bias. Another setting of interest would be the extensions of the models seen here to the 

case of competing risks. This would allow contemplating the impact of retrospective data 

in EHA in greater detail, in particular the influence of misclassified cases.  
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