Case Prioritization: Value Is Not Enough

Stephanie Coffey 5/15/2016 2016 AAPOR Austin, TX

Case Prioritization at Census

Motivated by current survey environment

- Rising costs, falling response rates, burden concerns
- Exploring different features and interventions
- Ongoing experiments since 2013
 - 2013 Decennial Census Test
 - Survey of Income Program Participation (SIPP): Q2 2016
 - National Health Interview Survey (NHIS): Q3 2016
- Requires Decisions
 - How to operationalize?
 - How to prioritize?

Case Prioritization

- Allows for Differential Effort
 - Field Surveys
 - Interviewers spend more effort on certain cases
 - Multimode Surveys
 - Differential recruitment through mode assignment
- By Time or Overall
- Need a Way to Assign Priority
 - Measure of value is commonly used
 - Value is often based on a model (not always!)
 - Assign value and sort

Determining Value of a Case

- Related to data collection goals
 - Minimize weight variation?
 - Prioritize by base weight, w_i.
 - Maximize response rate?
 - Prioritize by response propensity, $\hat{\rho}_i^R$.
 - Balance respondent population?
 - Prioritize by balancing propensity, $\hat{\rho}_i^B$.
 - Improve coverage of hard to reach cases
 - Prioritize predicted movers, spawns, new households
- Models are based on dynamic data value is dynamic

Value Isn't Enough

- Value doesn't consider likelihood of response
- Prioritizing by value only
 - "Throw good money after bad"
 - Continue attempting the same cases
- Consider expected value instead:
 - $E[value_i] = \hat{\rho}_{it}^R(value_i) + (1 \hat{\rho}_{it}^R)(0)$
 - You only realize the value if the case is completed
- Requires estimate of response propensity
- Prior presentation illustrates bias early

Initial Illustration

- Need data
 - Three months of cases from monthly Census surveys
 - Planning database data (geographic frame data)
 - Contact history data (interim and final outcome data)

Need two estimates of response propensity at time t

- Estimate based on "true" parameters at end, ρ_{it}^R
- Estimate based on collected data through t-1, $\hat{\rho}_{it}^R$
- Need estimates of value
 - Case 1: Case values are the randomly assigned [1,5]
 - Case 2: Case values correlated with ρ_{it}^R (r = -0.40)

Initial Illustration

- Three prioritization schemes for each value
 - $E[value_{it}|\rho_{it}^R]$ based on "true" prioritization
 - $E[value_{it}|\hat{\rho}_{it}^{R}]$ based on "t-1" prioritization
 - value_{it} only: ignoring response propensity
- Evaluation questions
 - How much overlap is there between methods?
 - How much value do you lose amongst prioritized cases?

Results: Prioritization Agreement

Value Assignment	% Cases Prioritized		
	5%	15%	25%
Uncorrelated (Random)	94%	87%	75%
Correlated (Negatively)	92%	78%	68%

Results: Prioritization Agreement

Value Assignment	% Cases Prioritized		
	5%	15%	25%
Uncorrelated (Random)	94%	87%	75%
Correlated (Negatively)	92%	78%	68%

- Partial information does not select the same cases
 - As more cases are prioritized differences increase
 - Correlation between R and V causes larger differences

Results: Percent Expected Value Obtained

Value Assignment	% Cases Prioritized		
	5%	15%	25%
Uncorrelated (Random)	76%	85%	86%
Correlated (Negatively)	74%	84%	86%

Results: Percent Expected Value Obtained

Value Assignment	% Cases Prioritized		
	5%	15%	25%
Uncorrelated (Random)	76%	85%	86%
Correlated (Negatively)	74%	84%	86%

- Partial information results in lower realized expected value
- Prioritized cases ended up...
 - Being less valuable than predicted by data through t-1
 - Ended up being more difficult to convert than expected

Conclusions

- Response rates are falling and costs are increasing
 - Make decisions about resource allocation
 - Case prioritization is one example
- Knowledge and data can help make these decisions
 - Reliable estimates of survey parameters is important!
 - Unreliable information may lead to suboptimal choices
- Bayesian methods can help mitigate this problem
 - Leverage external information to improve parameter estimation

Thank you!!

Contact Info: Stephanie Coffey stephanie.coffey@census.gov

