

The Leverhulme Trust

Test of adaptive survey design towards a Bayesian perspective in a longitudinal survey

Peter Lundquist and Anton Johansson (Statistics Sweden) Gabriele B. Durrant (University of Southampton)

JSM session Bayesian adaptive survey designs, July 30, 2017

Introduction and background

- Large survey resources are being spent on making unproductive calls e.g. contact attempts that do not lead to an interview.
- Unstable data collection and unclear collection strategy
- We have used work by Durrant et al. (2013, 2015) who assess the prediction of nonresponse models using paradata from previous and current wave
- The ambition is to find a new data collection strategy for the Swedish Labour Force Survey

Data used in our case study

The Swedish Labour Force Survey (LFS)

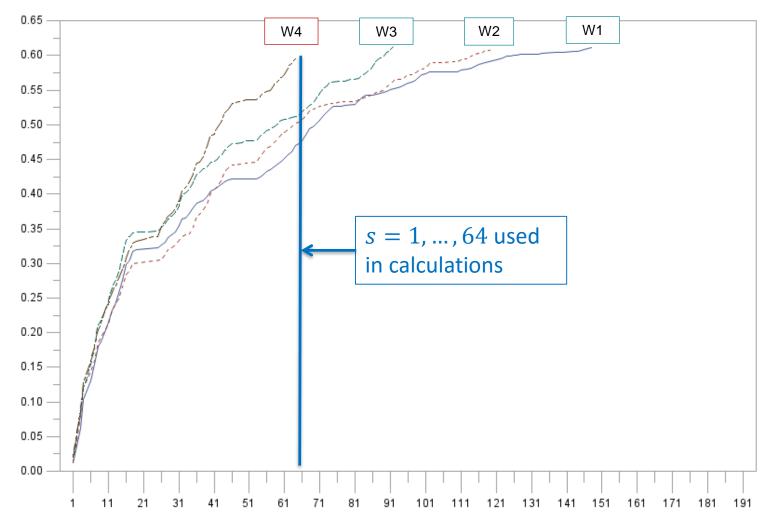
- Longitudinal survey with 8 waves
- "A new sample" every week
- Data collection mode: telephone only mode
- Two interviewer groups: field and call-center
- Data used: LFS in January 2016
 - Initial sample size 5,164; Week 4 sample
- Can we find a more stable (and cost reducing) data collection strategy?

Data collection in LFS

Approximately 100 Field + 100 call center interviewers sign up for the following shifts:

Shift/Day	Mon-Thu	Friday	Saturday	Sunday
09:00-12:59				
13:00-16:59				
17:00-18:59				
19:00-21:59		Contact b		

- We assume that the resources could be better allocated to the different subsamples (Week1-Week4 in January 2016)
- In Choudhry et al. (2011) the workload was optimized to minimize the data collection costs
- We will initially use the workload for Week4 and try to reduce the number of unproductive calls


LFS – fieldwork January 2016 Number of call attempts

Week		1	2		3	4	5	6	(1)+(2)
W1	(1):	17,896			(2): 12,412				30,308
W2			(1): 20,680			(2): 9,767			30,447
W3				(1): 20,8	813		(2): 8,219		29,032
W4					(1):	28,992			28,992
Fieldday	1		8	15	22	29		37	

(1) Primary fieldwork 16 days (equal all samples W1-W4)

(2) Extended fieldwork

Response progression over time-slots for 4 LFS-weeks

LFS: Jan 2016

Models for Phase 1+2 and 3

Logistic regression (binary), two different models

Model 1 Phase 1+2 time slots: s = 1, 2, ..., 56 (two weeks) **Model 2** Phase 3 time slots: s = 57, ..., 64 (day 15 and 16)

Dependent variable:

response (interview or **not** interview)

- Phase 1+2 ordinary fieldwork and Phase 3 follow-up
- Objects are individuals (not households)

Models for Phase 1+2 and 3

Logistic regression (binary), explanatory variables

Model 1: Phase 1+2 ($s = 1, 2,, 56$)	Model 2: Phase 3 ($s = 57,, 64$)				
Register data: Age (16-54 or 55-74 yrs)	Register data: Education (high) or not				
Born in Sweden or not	1 st wave				
Education (high) or not	2 nd -8 th wave and interview last wave				
Married or not	2 nd -8 th wave and no interview last wave				
House owner or not	2 nd -8 th wave and LONG -1 (more than 6 call attempts or not last wave)				
1 st wave	Day shift (9-12, 13-16, 17-18, 19-21)				
2 nd -8 th wave and interview last wave	LONG (more than 6 call attempts or not)				
2 nd -8 th wave and no interview last wave					
Day shift (9-12, 13-16, 17-18, 19-21)					
Time slot (1, 2,, 56)					

Data collection strategy

Phase	Description
1) Day 1-7 (s = 1, 2,, 28)	 Sort the predicted p̂_k objects in treatment (descending) according to Model 1 (Phase 1+2) for each s, n_s calls (based on decided capacity), A maximum of 3 calls
2) Day 8-14 (<i>s</i> = 29,, 56)	 Sort the predicted p̂_k objects still in treatment (descending) according to Model 1 for each s, n_s calls (based on decided capacity), A maximum of 9 calls After 4 calls: stop individuals in wave 2-8 that refused to participate last wave
3) Day 15-16 (<i>s</i> = 57,, 64)	 Sort the predicted p̂_k objects still in treatment descending according to Model 2 (Phase 3) for each s, n_s calls (based on decided capacity, reduced number), A maximum of 13 calls

Note: within each s is only one call attempt allowed to the objects

Simulation

- The response propensities are assumed to be $Be(\hat{p}_k)$ distributed in the two logistic regression models.
- For time slot 1: 5,164 random selections were made from Model 1. The randomization corresponds to the outcome if all the individuals in the sample were contacted for s = 1. The n_1 highest response propensities are inspected and those who "respond" are set aside.
- The "nonresponders" continue to the 2^{nd} time slot, s = 2 The n_2 highest response propensities are inspected and those who "respond" are set aside...
- The procedure continues until time slot 64, where the "data collection" ends.

The data collection is replicated 1,000 times for the described strategy.

Evaluation of the new strategy

P = the weighted response rate in per cent

IMB = the imbalance measure measures the difference between the response set r and the selected sample s for a chosen **x**-vector. It could be demonstrated* that IMB is equal to the variance for the response propensities for the chosen **x**-vector

$$CV_s = \frac{\sqrt{IMB}}{P}$$

Measure of bias

Using *income* and *employed* from registers, available for the selected sample s, is it possible to estimate the difference between estimators based on the response set r and the selected sample s.

- RDF_{exp} = the relative difference between an expansion estimator and the HT-estimator
- RDF_{cal} = the relative difference between a calibration estimator and the HT-estimator

*Särndal & Lundquist 2014

Note: auxiliary variables (register data) depends on available variables and the measures depends on the sample s.

Simulation results, Week 4

				Income	Employed		
LFS-January 2016	Р	IMB	CV_s	RDF _{exp}	RDF _{cal}	RDF _{exp}	RDF _{cal}
Week 4 (INPUT)	57.5	1.61	9.45	12.83	3.85	6.91	3.00
				Income		Employed	
Simulation	Р	IMB	CV_s	RDF _{exp}	RDF _{cal}	RDF _{exp}	RDF _{cal}
Strategy	64.0	1.67	8.78	10.03	1.42	6.93	2.49

The response rate *P* is weighted in percent, *IMB*, CV_s , RDF_{exp} and RDF_{cal} are multiplied with 100.

x-vector used in computations: Age, Hi	gh Education,	Owner,	Origin,	Civil,	Gender
(3)	(2)	(2)	(2)	(2)	(2)

The simulation manage to maintain the data quality and reduces the call attempts, this is extra clear in the follow-up (Phase 3)

Next steps

- Work with the logistic regression models:
 - Factors to investigate: time slots, the 2 first calls should be in a predefined time slot; outcome of previous call
 - Should Cox regression with time-varying coefficients be used?
 - Should Bayesian models (see Wagner and Raghunathan 2007) be implemented?
 - **Develop the tool:** include a simple cost function (e.g. time for interview, "not interview") and maximum interviewer hours

• Better strategies:

- The tool makes it possible to find better strategies with better control of the data collection (input to Schouten et al. 2017).
- Experiments? The possibility should be noted!

Thank you!

peter.lundquist@scb.se

anton.johansson@scb.se

References

Choudhry, Hidiroglou & Laflamme (2011). "Optimizing CATI workload to minimize data collection cost." Proceedings of the Survey Research Methods Section, 1904-1913, ASA.

Durrant, D'Arrigo & Müller (2013). "Modeling Call Record Data: Examples from Cross-Sectional and Longitudinal Surveys," in Improving Surveys with Paradata: Analytic Use of Process Information, ed. Kreuter, F., 281–308, Hoboken, NJ: John Wiley and Sons.

Durrant, Maslovskaya & Smith (2015). "Modeling final outcome and length of call sequence to improve efficiency in interviewer call scheduling." Journal of Survey Statistics and Methodology, 3, 397–424.

Johansson, Lundquist & Durrant (2016). "Stopping rules in a longitudinal survey – impact on cost and survey quality." Presented at AAPOR.

Särndal & Lundquist (2014). "Accuracy in estimation with nonresponse: A function of degree of imbalance and degree of explanation." Journal of Survey Statistics and Methodology, 2, 361-387.

Schouten, Mushkudiani et al. (2017). "A Bayesian analysis of design parameters in survey data collection." Paper submitted.

Thomas & Reyes (2014). "Tutorial: Survival estimation for Cox regression models with timevarying coefficients using SAS and R". Journal of Statistical Software, 61, Code Snippet 1, 1-23.

Wagner & Raghunathan (2007). "Bayesian approaches to sequential selection of survey design protocols." Proceedings of the Survey Research Methods Section, 3333-3340, ASA.