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Research questions 

1. Is there a theoretical basis for the assertion that a less representative 

response for X is indicative of a less representative response for other 

variables, even after adjustment using X? 

2. Is there any empirical basis for this assertion? 

 

In other words, should we prefer more balanced/representative data for bias 

reduction? 

 

 

RQ1 asks whether such indicators measure product quality or accuracy. 
Schouten (technical paper, 2015) 

 

RQ2 asks whether representativeness indicators measure process quality, i.e. 

quality control point of view. 
Schouten, Cobben, Lundquist & Wagner (JRSSA, 2015, forthcoming)  



Empirical evidence 

Options to investigate empirical support: 

1. Simulate adaptive survey designs with reduced effort based on a real data 

set with a maximal or very extensive effort; 

2. Set aside part of the auxiliary variables and treat those as pseudo survey 

variables; 

 

In the paper, we chose the second option, but literature has reported a few 

studies under the first option. 



Empirical evidence 

Approach: 

• Collect survey data sets with multiple designs or waves over various 

countries/institutes; 

• Select available auxiliary variables in the data sets and sort them randomly; 

• Add variables one by one, and compute (partial) CV and R and remaining 

nonresponse bias given adjustment on variables already in the models; 

• Rank designs/waves within a data set based on their performance; 

• Perform a rank test on the inversions in the design preferences when adding 

the variables one by one;  

 

Conclusion: On combined data sets, the hypotheses of random inversions are 

rejected and point at consistency in design preferences. 



Theoretical conditions - 1 

Some considerations: 

• Survey nonresponse is not-missing-at-random (NMAR) for survey 

variables, unless an informed model would exist; 

• The nature of the generation of (auxiliary) variables needs to be modelled, 

because the possible NMAR universe is very “big”; 

• If all NMAR mechanisms are seen as equally likely, then ASD may only be 

useful to improve precision;  

 

 

How to set up a framework for generating variables on a population?  



Theoretical conditions - 2 

Two options to model variable generation in a data set: 

1. Enumerate (only conceptually) all variables and define a random selection 

mechanism that applies to surveys; 

2. Construct the population as a grid where measurements collapse strata to 

(much) smaller numbers, and lead to variables with a much smaller 

number of categories;  

 

 

Since collinearity is crucial in extending observed data patterns to possible 

missing data patterns, option 2 seems inevitable. 

 

As a consequence, a population has two important features: the number of 

population strata and their relative sizes. 



Theoretical conditions - 3 

Two basic families of variable generating distributions: 

 

• Uniform: Population strata are allocated randomly to a smaller random 

number of categories; 

 

• Clustered: There are at least two population strata that are always allocated 

to the same category; 

 

 



Theoretical conditions - 4 

The two types of distributions allow for strong conclusions about expected 

coefficients of variation and R-indicators, and about the efficacy of ASD: 

 

• Under uniform grouping, a lower CV for one design than another implies a 

lower expected CV on any other randomly drawn variable on that design; 

 

• Under clustered uniform grouping, the same holds but for any other 

randomly drawn variable from the same cluster; 

 

• Both conclusions are still valid when ASD is based on minimizing CV; 



Estimating population parameters 

When (𝑋1, 𝑋2, … , 𝑋𝑀)
𝑇 are uniformly generated, then the population 

diffusion can be estimated.  A possible estimation strategy is through 

the chi-square statistic between pairs of variables 
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Discussion 

Questions for discussion: 
 

– Sensible to construct theoretical conditions for the efficacy of ASD? 

 

– Is it meaningful to think about the random, possibly clustered, generation of 

variables? 

 

– The diversity (number of strata) and diffusion (variation in stratum sizes) 

parameters of a population may be estimated from panel data. Useful? 
 
 
Other issues: 

 

– Many variables are needed to get a precise signal of a prefered design. The 
empirical study confirms this requirement; 
 

– Random measurement error leads to spurious diversity; 
 
 



Empirical evidence 

  Number of rank inversions 

 

Expected Observed p-value 

Stat Netherlands 189.5 97 <0.001 

Stat Sweden/ISR 118.5 97 0.02 

All 308 194 <0.001 

Rank test applied to rank inversions in design preferences when adding 
auxiliary variables one at a time (14 data sets). 



Empirical evidence 

Coefficient of variation and R-indicator plotted against the remaining 
nonresponse bias after adjustment. 



Theoretical evidence 

Coefficient of variation for five mode designs in the Crime Victimization 
Survey for ten auxiliary variables, averaged and for all variables combined. 

1 2 3 4 5 6 7 8 9 10 Av All 

W 0.21 0.14 0.07 0.28 0.07 0.07 0.01 0.18 0.15 0.05 0.12 0.36 

M 0.18 0.16 0.05 0.14 0.06 0.06 0.04 0.19 0.05 0.04 0.10 0.29 

F 0.09 0.13 0.00 0.00 0.14 0.05 0.01 0.11 0.04 0.13 0.07 0.23 

W→F 0.06 0.08 0.01 0.08 0.10 0.08 0.01 0.11 0.06 0.10 0.07 0.18 

M→F 0.08 0.09 0.02 0.09 0.05 0.03 0.04 0.10 0.05 0.04 0.06 0.16 



Theoretical evidence 

Coefficient of variation for five mode designs in the Crime Victimization 
Survey after selection on Cramèr’s V with respect to three survey variables. 

  

  

Design 

𝐶𝑉 > 0.10 𝐶𝑉 > 0.15 

𝑌1 𝑌2 𝑌3 𝑌1 𝑌2 𝑌3 

Av All Av All Av All Gender NA Age 

W 0.06 0.10 - - 0.15 0.29 0.07 - 0.21 

M 0.05 0.08 - - 0.14 0.24 0.05 - 0.18 

F 0.07 0.14 - - 0.11 0.19 0.00 - 0.09 

W→F 0.06 0.10 - - 0.09 0.16 0.01 - 0.06 

M→F 0.03 0.05 - - 0.07 0.13 0.02 - 0.08 



Nonresponse adjustment  

Frequently used estimators for population mean 
 

Response mean (HT-estimator):    𝑦 𝑅𝑀 =
 𝑅𝑖𝑌𝑖
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Inverse Propensity Weighting:     𝑦 𝐼𝑃𝑊 =
1
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Generalised Regression:         𝑦 𝐺𝑅𝐸𝐺 = 𝑦 𝑅𝑀 + β(𝑥 𝑛-𝑥 𝑅𝑀) 

 

 

Double-robust:                        𝑦 𝐷𝑅 = 𝑦 𝐼𝑃𝑊 + β(𝑥 𝑛-𝑥 𝐼𝑃𝑊) 

Approximate bias 
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Bias intervals under NMAR 

Given correctly specified link functions between X, Y and 𝜌, and given the 

population regression parameters, the IPW, GREG and DR estimators center 

the NMAR bias interval around 0; 

 

The width of the NMAR interval is approximately equal to 

 
2𝑆 𝑌 𝑆(𝜌)

𝜌 
1 − cor2(𝑌, 𝛽𝑋) 1 − cor2(𝜌, 𝜌𝑋) 

 

and, hence, proportional to 

 

 (CV2(𝜌) − CV2(𝜌𝑋))𝑅
2(𝑋, 𝑌) 

 

with CV the coefficient of variation and 𝑅2 the proportion of unexplained 

variance. 



Setting 1 – uniform grouping 

 

Theorem: If 𝑋 is generated from a uniform grouping distribution, then   

                                      ECV2 ρX =
EC−1

G−1
CV2(ρ).  

 

Corollaries: 

• When CV(design=1) < CV(design=2) for X, then in expectation 

CV(design=1) is also smaller for any other randomly drawn variable; 
• For remaining bias after nonresponse adjustment, it holds that 

        𝐶𝑉2 𝜌 − 𝐸𝐶𝑉2 𝜌𝑋 =
𝐺−𝐸𝐶

𝐺−1
𝐶𝑉 𝜌 =
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𝐸𝐶−1
𝐸𝐶𝑉 𝜌𝑋 .  

 



Setting 2 – clustered uniform grouping 

Theorem: If X is generated from a clustered, uniform grouping 

distribution, then it holds that ECV2 ρX =
EC−1

G−1

SB,p
2(ρ)

ρ 
, with SB,p

2 ρ  a 

between variance and SB,p
2(ρ) ≤ S2(ρ).  

 

Corollary: Theorem is motivation for acceptance-rejection schemes in 

which subsets of variables are selected. 

 
1. Accept uniformly generated X when Cramer’s V is larger than a specified 

threshold, 𝐶𝑉 𝑌, 𝑋 > 𝛾; 

2. Randomly draw variables from the subset of variables that relate to 

nonresponse (paradata); 

3. Randomly draw variables from the subset of variables that relate to the 

survey variables; 


