### A Bayesian analysis of survey design parameters

- A paper for the BADEN Network
- Lisette Bruin, Nino Mushkudiani, Barry Schouten

4th Workshop Advances in Adaptive and Responsive Survey

Design, November 9 and 10, 2015, Manchester





# **Summary**

- Objectives;
- Design (definitions, notations, model);
- Bayesian analysis
  - General approach to Bayesian analysis;
  - Prior distributions;
  - Posterior distributions;
- Discussion

# **Objectives**

- To set up a general model for survey design parameters;
- To introduce a Bayesian analysis of survey design parameters;
- To introduce a Bayesian analysis of quality and cost indicators based on survey design parameters;



## **Survey design parameters**

Three sets of survey design parameters suffice to compute most of the quality and cost constraints:

- $\rho_i(s_{1,T})$ : Response propensities per unit per strategy;
- $C_i(s_{1,T})$ : Expected costs per sample unit per strategy;
- $D_i(s_{1,T})$ : Adjusted mode effects per unit per strategy;

We restrict to nonresponse error and leave the adjusted mode effects to future papers.



## **Functions of survey design parameters**

We consider three functions of the design parameters:

· the response rate

$$RR(s_{1,T}) = \frac{1}{N} \sum_{i=1}^{n} d_i \rho_i (s_{1,T})$$

• the total cost

$$B(s_{1,T}) = \sum_{i=1}^{n} c_i (s_{1,T})$$

the coefficient of variation

$$CV(X, s_{1,T}) = \frac{\sqrt{\frac{1}{N}\sum_{i=1}^{n} d_i(\rho_i(s_{1,T}) - RR(s_{1,T}))^2}}{RR(s_{1,T})}$$



# Definitions

- Actions
  - Choices for design features (number of calls, use of incentive, interview mode)
- Strategy
  - The total of choices made for the design features, denoted by  $S_{1,T}$
- Phase
  - *T* phases of survey design t = 1, 2, ..., T
- Auxiliary data
  - A vector  $x_i$  that is linked from frame data, administrative data  $(x_{0,i})$  or paradata  $(x_{t,i})$

If  $x_i = x_{0,i}$ , then the ASD is **static**. If for some *t*,  $x_{t,i}$  is used to choose actions in a subsequent phase, then the ASD is **dynamic**.



# **Modeling survey design parameters**

#### Goal:

A simple, but sufficiently general model including all potential features:

- more than 1 phase
- dynamic
- dependency on history of actions
- non-eligible nonresponse for follow-up

### Modeling:

- 1. Decomposition of model parameters into their main components
- 2. General linear models that link these components to the available auxiliary variables
- 3. Assumption that cost, contact and participation per sample unit are independent of those of other sample units



## **Decomposition (response)**

Components:

- $\kappa_{t,i}(s_{1,t})$  propensity of a contact of subject *i* in phase *t* under strategy  $s_{1,t}$ .
- λ<sub>t,i</sub>(s<sub>1,t</sub>) propensity of a participation of subject *i* in phase *t* given contact under strategy s<sub>1,t</sub>.

Response per phase:  $\rho_{t,i}(s_{1,t}) = \kappa_{t,i}(s_{1,t}) \cdot \lambda_{t,i}(s_{1,t})$ 

Total response (when in subsequent phases all nonresponse receives a follow-up):

$$\rho_{i}(s_{1,T}) = \kappa_{1,i}(s_{1}) \lambda_{1,i}(s_{1}) + \sum_{t=2}^{T} \left( \left( \prod_{l=1}^{t-1} (1 - \kappa_{l,i}(s_{1,l}) \lambda_{l,i}(s_{1,l})) \right) \kappa_{t,i}(s_{1,l}) \lambda_{t,i}(s_{1,l}) \right)$$
response in phase 1
no response in phase t



# **Decomposition (cost)**

### Components:

- $C_{0,t,i}(s_{1,t})$  expected costs to make a contact attempt;
- $C_{R,t,i}(s_{1,t})$  expected costs for the response;
- $C_{NR,t,i}(s_{1,t})$  expected costs for a nonresponse.

#### Expected costs per phase:

$$\begin{array}{c} C_{0,t,i}(s_1) + \kappa_{t,i}(s_1) \left(1 - \lambda_{1,i}(s_1)\right) C_{NR,t,i}(s_1) + \kappa_{t,i}(s_1) \lambda_{t,i}(s_1) C_{R,t,i}(s_1) \\ \gamma \end{array}$$
contact nonresponse response

### Example (phone)

- Costs for contact attempt for time to dial number
- Nonresponse costs only for the duration of the call
- Response costs for the duration of the interview and processing the responses



## Modeling design parameter components

Model for contact propensity (similar for participation propensity):

$$h(\kappa_{t,i}(s_{1,t})) = \begin{cases} \alpha_{t,0}(s_t)x_{0,i} + \delta_t^C(s_{1,t-1}), & t < t_1, \\ \alpha_{t,0}(s_t)x_{0,i} + \alpha_{t,t_1}(s_t)x_{t_1,i} + \delta_t^C(s_{1,t-1}), & t \ge t_1. \end{cases}$$

Model for expected response costs (similar for contact and nonresponse costs):  $C_{R,i}(s) = \gamma_R(s)x_{0,i} + \varepsilon_{R,i}(s), \quad s \in S.$ 

#### **Examples**

- $x_{0,i}$ : the age (group) of the subject
- $\alpha_{t,0}(s_t)$ : relation between age and response
- $x_{t_1,i}$ : whether a (web) survey is started, but not finished
- $\gamma_R(s)$ : a measure for the expected interview time per age (group).



### General approach:

- 1. Assume independency of parameters;
- 2. Assign prior distributions;
- 3. Derive likelihood functions;
- 4. Derive approximations to posterior distributions of design parameters;
- 5. Derive approximations to posterior distributions of aggregate quality and cost measures (functions of design parameters).

### Prior distributions (hyperpriors):

- Inverse Gamma: variance parameters in  $\varepsilon_{0,i}(s)$ ,  $\varepsilon_{R,i}(s)$ ,  $\varepsilon_{NR,i}(s)$
- Normal distribution: all other regression parameters

### Parameters prior distribution (hyperparameters)

derived from:

- Expert knowledge
- Historic survey data (empirical Bayes)



#### **Posterior distributions**

#### Joint posterior distributions of interest:

- 1. Individual response propensities and costs optimization parameters
- 2. Overall quality and cost indicators monitoring analysis

#### **Required observed data:**

- Realized costs
- Response outcomes
- Used strategies
- Auxiliary data



#### Posterior distributions

**No closed forms:** Posterior distributions of response propensities and costs (and overall quality and cost indicators) do not have closed forms.

**Proposal:** Draw MCMC samples from the posterior distributions of the regression parameters in the contact, participation and cost models.

**Advantage:** Posterior distributions of overall quality and cost indicators follow directly from the samples.

**Obvious choice:** Gibbs sampler to iterate draws for each parameter separately (some conditional distributions still without closed forms)



# Discussion

#### Model

• Is the model sufficiently general/simple?

### **Prior distributions**

- Acceptable choices?
- Is the assumption of the independency of the priors realistic?
- What are meaningful properties to investigate in a simulation study?
- How to translate knowledge to hyperparameters?

### Posterior distributions

- <u>Approximation using Gibbs sampler?</u>
- How to deal with the non-linear link functions?

