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2 Goals & Outline2

Goals

• Highlight opportunities for technology transfer

• Identify a few research ideas

Outline

• Overview of survey and clinical trial adaptations

• Examples of Survey and of Clinical Trial adaptations

• Survey ←→ Clinical

• Coda: Care is needed

Some displayed details are FYI and won’t be discussed

2
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3 Types of Adaptation (a subset)

In Trials

Stop early: for efficacy, futility or harm (group sequential designs)

Modify criteria: enrollment, dose, sample size, follow-up time, randomization
probabilities or endpoints

Target recruitment: to ‘enrich’ with potential responders to treatment

Adjust randomization: to over-populate the apparently better treatment

Re-randomize: participants with poor outcomes to another treatment;
‘Sequential, Multiple Assignment Randomized Trials’ (SMART)

In Surveys

Stop early: for ‘efficacy’ (sufficient data) or futility (little potential for more)

Dynamically: target, enrich and suppress

Efficiently allocate: data collection resources

Mode-switch: start with the web; delay ?? days before sending hard copy

Modify timing: or frequency of contact attempts

Change incentives: for participating or responding

Augment R-factors: to include effects of ultimate analysis
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4 Bureaucratic Traction in Clinical Trials
Official Guidance

• The European Medicines Agency in 2007 and the U. S. FDA in 2016 and 2018

◦ For all FDA guidances and more, visit,
https://www.fda.gov/drugs/guidance-compliance-regulatory-information

Question

• Is there, or should there be, similar guidance from AAPOR or other
organization; possibly, from the ASD group?

Innovation at the FDA
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5 Survey −→ clinical trial
Monitor representativeness and improve it by targeted enrollment or follow-up

• To improve internal validity: compare baseline variables of respondents to those
of overall sample, and target intensive follow-up (double-sampling) of
non-responders to increase balance/representativeness

• To improve external validity: monitor how representative the enrolled
participants are of the target population and selectively increase efforts to enrol
underrepresented groups

• Use R-indicators to measure balance/representativeness, and determine which
baseline variables contribute most to it

Collect and use paradata to improve retention and protocol compliance

• Number of attempts needed to schedule visit

• Arrival time (late or early)

• Number of questions answered and time on each question in interviews

• Clinician observations on participant (dis)satisfaction with study experience

• Use paradata to predict participant retention and protocol compliance

◦ Then, identify whom to target with interventions that encourage
participation and/or protocol compliance



6 Clinical Trial −→ Survey
A chartered Data Monitoring Committee

• Constitute a chartered, arms-length committee with the appropriate expertise
and freedom from conflict of interest that meets at regular intervals, including
pre-study initiation

Clinical
• Called a Data Monitoring Committee (DMC), a Data and Safety Monitoring

Committee (DSMB), . . .

◦ Monitors study conduct (enrollment, data timeliness and quality),
participant safety, treatment efficacy or futility

◦ Makes recommendations to the study sponsor

Survey
• The DMC/DSMB could evaluate the frame and monitor:

◦ Survey conduct (enrollment, data timeliness and quality)
◦ Implementation of adaptive decisions (timing, frequency, contact mode for

non-respondents)
◦ Respondent burden (e.g., from multiple contacts)
◦ Disclosure avoidance measures

Is a survey DMC/DSMB worth considering?



6 Clinical Trial −→ Survey
A chartered Data Monitoring Committee

• Constitute a chartered, arms-length committee with the appropriate expertise
and freedom from conflict of interest that meets at regular intervals, including
pre-study initiation

Clinical
• Called a Data Monitoring Committee (DMC), a Data and Safety Monitoring

Committee (DSMB), . . .

◦ Monitors study conduct (enrollment, data timeliness and quality),
participant safety, treatment efficacy or futility

◦ Makes recommendations to the study sponsor

Survey
• The DMC/DSMB could evaluate the frame and monitor:

◦ Survey conduct (enrollment, data timeliness and quality)
◦ Implementation of adaptive decisions (timing, frequency, contact mode for

non-respondents)
◦ Respondent burden (e.g., from multiple contacts)
◦ Disclosure avoidance measures

Is a survey DMC/DSMB worth considering?



7 Clinical Trial −→ Survey
Sequential Multiple Assignment Randomized Trial (SMART) designs

• In each wave, participants are randomized to different contact modes,
intensities or incentives to respond

Goals (somewhat in competition)

• Conduct a good survey

• Learn which sequences are most effective in producing sample balance,
decreasing cost or decreasing survey duration3

In surveys

• Identify optimal (at least very good) sequential treatment rule within strata of
auxiliary variables using methods of Murphy (2003); Robins (2004);
van der Laan & Luedtke (2015)

• For example, target non-respondents most likely to increase sample
representativeness (e.g., R–indicator) at lowest cost

Issue
• Requires modeling, and so vulnerable to model misspecification

◦ Necessary for (almost) all adaptive designs

3
Dworak and Chang (2015) randomized non-respondents in the Health and Retirement Survey to different

sequences of $$ and persuasive messages.



8 SMART Surveys

Get Smart

• Specify mode sequences, then randomize to sequences or sequentially randomize
to learn what works well

• If embedded in a real survey, make sure to maintain survey quality

◦ Balance learning and doing

Notation (FYI)

mk = Planned mode sequence, e.g., m1 = internet, m2 = web, m3 = CATI, . . . , mK

• The mk don’t have to be unique, and ‘mode’ can have components
• ‘internet:(no inducement)’ and ‘internet:inducement’ are different modes

Z ∈ {1, 2, . . . ,K ,K + 1} indicates the position in the sequence that generated the response (Z = K + 1
indicates ‘no response’)

mZ = the mode that produced the response

• In reality full sequence up to and including mZ is ‘the mode’

Ỹ = The true, underlying value, assumed mode-independent

Y = Reported value–depends on Ỹ and can depend on mode and mode sequence

X = Covariates



9 Monitoring Representativeness: necessary inputs
See4,5 for Meng’s cautions on lack of representation

Sampling frame (under-utilized in clinical and field studies)

• (Joint) distributions of a variety of attributes

• Benchmarking to frame and sample totals

• A high-quality sampling frame empowers effective adaptation

And, a subset of

• Mode-specific response time ‘event curves’

• Propensity models for response, occupied unit, . . .

◦ Logistic or ‘logic’ regression, CART, random forests, . . .

• Cost & Quality metrics

• Measures of statistical information

4
Meng’s discussion of Keiding&Louis (2016)

5
Meng (2018). Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data

Paradox, and the 2016 Presidential Election. Annals of Applied Statistics, 12: 685–726.



10 Monitoring & Adjusting Representativeness
• Imbalance/balance indicators (Särndal, 2008, 2011; Särndal and Lundström,

2010; Lundquist and Särndal, 2013) and R-indicators (Schouten et al., 2009,
2011) identify,

◦ Attributes that drive variation in response propensities and support
adaptation by evaluating which subgroups are over/under represented

• Goals resonate with enriching a clinical trial

The sample R-indicator

• ρi is the estimated (possibly adjusted) response propensity for group i

R(ρ) = 1− 2

√√√√ 1

N − 1

N∑
1

(ρi − ρ̄)2

• R(ρ) = 1 indicates that the sample is fully representative

◦ Keiding & Louis6,7 note that imbalance doesn’t imply lack of
representativeness

6
Keiding N, Louis TA (2016). Perils and potentials of self-selected entry to epidemiological studies and

surveys (with discussion and response). J. Roy. Statist. Soc., Ser. A, 179: 319–376.
7

Keiding N, Louis TA (2018). Web-based Enrollment and other types of Self-selection in Surveys and Studies:
Consequences for Generalizability. Annual Review of Statistics and Its Application, 5: 25–47.



11 Comparison of incentive approaches in the The National Survey of College Graduates8

• 4 separate surveys each using a different set of incentives, but with the same
attributes used in the propensity model

8Thanks to Ben Reist



12 Partial, unconditional, R-indicators

• Identify subgroups that are over/under represented

• Use the information to target cases; encourage or not encourage

• Adapt by switching modes, incentives, etc.

• With ρk the estimated (possibly adjusted) response propensity for group X = k,
ρ the vector of indicators, and ρ̄ the (weighted) mean, the unconditional
R-indicator is

Ru(X = k,ρ) =

(
Nk

N+

) 1
2

(ρk − ρ̄)

• Ru = 0⇒ balance



13 NSCG Data Monitoring Example
Could use a similar plot for clinic or subgroup representation



14 Moving beyond R-indicators
• Analysis of survey data can/should include, re-weighting, imputation,

modeling, . . .

• Survey cost is also a consideration

• So, include these in an adaptation criterion

• High-level view:

◦ ν = T : the last day of data collection

◦ Objective function: Performance(T) = MSE or other quality metric

◦ Backward induction: find the next-phase adaptation that maximizes,

E
{

Performance(T) | current data(ν), adaptation(ν)
}

in one or many steps

• Bayesian structuring is almost essential

Notation (FYI)

φk = frame fraction for sub-population k

n(ν)
k

= sample size for sub-population k at survey day ν

f (ν)
k

= n(ν)
k
/n

(ν)
+ = sample fraction

for sub-population k at survey day ν

(f(ν), n
(ν)
+ ,φ) = data at day ν

T = last day of data collection

(f(T), n
(T)
+ ,φ) = analysis data set

M( f(T), n
(T)
+ , φ | analysis) = Performance(T)
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15 Clinical Trials: Allocation on Outcome
Bayesian Structuring ≈ Louis9,10

• Treatments T1 and T2, means (µ1, µ2) ∼ G

• Sequential Probability Ratio Test (SPRT) stopping based on the likelihood-ratio

(Lmn) after m responses on T1 and n on T2

Continue if 0 < A < Lmn < B <∞
• Frequentist type I and II errors are controlled, even with adaptation

• With an equipoise (50/50) prior,
πmn = pr(µ1 > µ2 | data) = Lmn/(1 + Lmn)

• Select an imbalance bound: 0.5 ≤ φ < 1.0

• If a large mean is good, allocate to keep,

φ = 1:
m

m + n
≈ πmn

general φ : m/(m + n) ≈ φπmn + (1− φ)(1− πmn)

• Optimizes a trade-off between total sample size and # on the inferior treatment

• The strategy is likely relevant to survey optimization

9
Louis TA (1975). Optimal allocation in sequential tests comparing the means of two Gaussian populations.

Biometrika, 62: 359–369.
10

Louis TA (1977). Sequential allocation in clinical trials comparing two exponential survival curves.
Biometrics, 33: 627–634.
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16 Biometrika (1975), Simulation Results
Gaussian responses; T1 is better

• Mφ and Nφ are expected sample sizes

• Raw Cost: excess total sample size = (Mφ + Nφ)− (M0.5 + N0.5)

• Raw Benefit: reduced assignment to the inferior treatment = N0.5 − Nφ

100φ→ 50 70
Mφ 78 127
Nφ 78 57

Mφ + Nφ 156 184
Raw Cost 0 28

Raw Benefit 0 21

• Trade-offs: There is no free lunch

• Gain relative to 50/50:
(

φ
1−φ

)
×Benefit - Cost
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17

From xkcd



18 Clinical trial stopping rules11

Thomas A. Louis 21

O’BRIEN-FLEMING
TWO-SIDED, CURTAILED

June 19, 2003 Thomas A. Louis 21June 19, 2003

11
DeMets DL, Friedman LM, Furberg CD (2006). Data Monitoring in clinical trials. New York: Springer.



19 Bayesian Monitoring: The BLOCK HF trial12

• Intention-to-treat analysis

• Adaptive Bayesian design with a maximum of 1200 patients

◦ Two interim analyses with rules for sample size re-estimation,
for stopping enrollment, and for terminating follow-up

• The safety stopping rule was based on the posterior probability of an increased
risk of primary endpoints in patients with BiV pacing relative to RV pacing

• Terminating enrollment or follow-up was based on the predictive probability of

PP0 = pr(achieving the primary objective @ 12 mths fu| data, prior)
PPR = pr(futility @ 12 mths fu | data, prior)

projected to when all patients had been followed for at least 12 months

• Low information priors

• Substantial simulations to evaluate properties, including frequentist performance

12
Curtis et al. (2013). Biventricular Pacing for Atrioventricular Block and Systolic Dysfunction. NEJM, 368:

1585–1593.



20 BLOCK-HF decision table
PP0 = pr(achieving the primary objective @ 12 mths fu| data, prior)

PPR = pr(futility @ 12 mths fu | data, prior)



21 Survey Stopping Rule13

• When is there sufficient information to stop conducting interviews?

• The ‘stop and impute rule’

θ̂now : Use currently collected data, augmented by imputation of missing values

• The ‘project rule’

θ̂future : Collect a specified number of additional interviews, and then augment by
imputation of missing values

• Specify a discrepancy (ε) and an uncertainty (γ), then if a prediction model
indicates that

pr
(
| θ̂now − θ̂future |> ε

)
< γ,

stop and use θ̂now

Similar to futility assessment in a clinical trial

13
Wagner, J. and Raghunathan, T. E. (2010) A new stopping rule for surveys. Statist. Med., 29: 1014–1024.



22 Extension of Wagner & Raghunathan14

• Have information on n1 of the n units in the sampling frame

• yi is the observed variable for the i th unit; yn1 = (y1, . . . , yn1 )

• ŷi is the predicted value for an unobserved unit

• Zi are covariates (either known for all i or only for units that have provided
information)

• p = p(yn1 ,Z), fraction of n2 units predicted to respond

• Compute,

e1 =

∑n1
1 yi +

∑n
n1+1 ŷi

n

e2 =

∑n1+pn2
1 yi +

∑n
n1+pn2+1 ŷi

n

• Stop data collection when,

pr(|e1 − e2 |< δ | data, prediction model, . . . ) > 1− γ

• Accommodate stochastic uncertainty: replace pn2 by a Binomial (n2, p) r.v.

• Additional accommodation:
Use a beta-binomial distribution that injects (posterior) uncertainty in p

14
Wagner, J. and Raghunathan, T. E. (2010) A new stopping rule for surveys. Statist. Med., 29: 1014–1024.
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n

• Stop data collection when,

pr(|e1 − e2 |< δ | data, prediction model, . . . ) > 1− γ

• Accommodate stochastic uncertainty: replace pn2 by a Binomial (n2, p) r.v.

• Additional accommodation:
Use a beta-binomial distribution that injects (posterior) uncertainty in p

14
Wagner, J. and Raghunathan, T. E. (2010) A new stopping rule for surveys. Statist. Med., 29: 1014–1024.



23 Using the Binomial(n2, p) distribution (core idea)

• p = response probability

• ngoal = desired number of responses

• γ = probability of obtaining at least ngoal responses

• The table presents the required number of contacts to ensure that,

pr(#{responses} ≥ ngoal | p) ≥ γ

p = 0.25 p = 0.50
γ ↓ 50 200 50 200 ← ngoal
.50 203 803 101 401
.95 247 887 119 436

Increase
over γ = .50 45 84 18 35

Beta-binomial Bayes: p ∼ Beta(µ,M),M is effective sample size

• For µ = .50 and ngoal = 50 :: γ = .50, all M: need 101 contacts

γ = 0.95 :
M 5 50 ∞

#{required} 230 130 119
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24 Timely & Accurate Data are Essential

Data delay matrix from a clinical trial

A similar approach can (should?) be used in surveys



25 Care is Needed
• Validity and efficiency of data generated by an adaptive design are strongly

dependent on protocol-specifics and their alignment with underlying truths

• Adaptation adds complexity, requires sophisticated and reliable infrastructure,
requires effective training and supervision

• Valid analyses of data generated by adaptive methods requires more care and
sophistication than those generated from a non-adaptive design

• Consequently, adaptive designs must be robust to credible model
misspecification and other violations of working assumptions

• Aggressive simulations are essential; in the clinical trials context, see15,16

• Research is needed on the trade-offs between efficiency and robustness, on the
policy or clinical consequences of reduced quality, on cost/benefit

• Stopping rules are important, but so are starting rules

◦ Are the potential benefits of adaptation worth the overhead and risk?

You get only one chance to generate the data, so don’t mess it up

15
FDA (2016). Adaptive designs for medical device clinical studies: guidance for industry and Food and Drug

Administration staff.
16

FDA (2018). Adaptive designs for clinical trials of drugs and biologics. Guidance for Industry.
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26

#thankyou
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29 Representativeness: Xiao-Li Meng’s Cautionary Tale17,18

(A big sample size, n, may not save the day)

• Compare the MSE for two estimators of the finite population mean
(ȲN), N large

ȳsrs : Sample mean of a simple random sample of size nsrs = 100
ȳsel : A self-selected, web sample of size nsel

• With ρ(Y,π) = cor(Y, inclusion propensity) = 0.05, and frac = nsel/N,

MSEsel ≤ MSEsrs ⇐⇒ frac ≥ 20%

• For example, N = 50M requires nsel ≥ 10M to beat the SRS with nsrs = 100 (!)

• Good information on ρ(Y,π) is needed to rescue the situation

A large sampling fraction, n/N, may not be protective

17
Meng’s discussion of Keiding&Louis (2016)

18
Meng (2018). Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data

Paradox, and the 2016 Presidential Election. Annals of Applied Statistics, 12: 685–726.


