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Adaptive, Responsive, Tailored Design

The “long crisis” in probability sampling – increasing costs
and declining response rates – have lead to the
formalization of ideas around Adaptive, Responsive, and
Tailored design (Murphy et al. 2018).
Overlapping concepts.

Adaptive design: change protocol based on known
information about a potential respondent.

Often set in place for a given round of data collection based
on information gained from pilot studies or previous waves.

Responsive design: change protocol based on preliminary
information obtained during data collection.

Updated in real time based on data collected as part of the
main study.

Tailored design: protocol varied to individual preferences
or to an overall design.
Goal: good question! “Minimize cost and maximize
information”. How to formalize?
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Adaptive Design: Non-respondent Sampling

Concept embedded almost from the beginning of
probability sampling.

Releasing replicates to control sample size in the presence
of non-response.
Subsampling non-respondents (Hansen and Hurwitz 1946)

Begin with low-cost mode with high non-response (mail)
and switch to high cost mode with low nonresponse (face to
face) for a random subsample of non-respondents.
Under SRS and equal variance across the first-stage
respondent and nonrespondent strata, subsample fraction
of non-respondents r =

√
C1+RC2

RC3
, where C1 +RC2 is the

total cost associated with conducting the low-cost mode
and RC3 is the total cost of the high cost mode.
Weight by 1/r to account for underrepresentation
(assuming perfect response).
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Adaptive Design: Subsampling callbacks

Elliott et al. (2000) extended this to multicallback settings,
with or without change of mode.
Consider dropping a fraction of respondents αm at the mth
callback, m = 1, ...,K .

Optimized by determining minm αm,

αm = min
(√

(1−νm
0 )(1−νm

1 )

νm
0 νm

1
,1
)

, where under certain

conditions, νm
1 is the proportion of cost of remaining calls

without subsampling and 1−ν0 is the proportion of
interviews to be attempted without subsampling.
Weight up cases by a factor of 1/αm for cases in the mth
callback or later, and increase sample size to
nαm = n1[νm

0 +(1/α)(1−νm
0 )] to retain equal variance.

αm < 1 when νm
0 +νm

1 > 1→ when proportion of costs in
the callbacks to be subsampled is less that the proportion
of interviews remaining.
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Adaptive Design: Subsampling callbacks

Applied to 1992 National Comorbidity Survey: face-to-face
survey with up to 29 contact attempts.
Although costs increased over time and savings could be
obtained by subsampling, it was relatively minor:
subsampling at the 7th or 8th call, dropping between 23%
and 30% of non-respondents reduced costs by 0.4-1.5%.
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Adaptive Design: Subsampling callbacks

Applied to 1996 American Communities survey: 2 mail
attempts, 3 phone call attempts (if listed), 3 face-to-face
attempts.
Depending on assumptions about cost, major savings
could be achieved: from 18% assuming telephone contact
averages 2 times and face-to-face 10 times the cost of
mail, to 40% assuming telephone averaged 5 times and
face-to-face 50 times the cost of mail.
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Adaptive Design: Mode Switching

Calinescu et al. (2013) undertook a fairly comprehensive
approach to optimizing a survey by allowing for switching
among m = 1, ...,M−1 modes or stopping (m = M) at each
t = 1, ...,T contact attempt.
Formulate as non-linear optimization function. Subdivide
the population into g = 1, ...,G homogenous groups and
maximize

∑
g

∑
t

∑
m

Pg fg(t−1)xg(t ,m)pg(t ,m)rg(t ,m)

Pg=proportion of the sample in the group,
fg(t) = ∏m[1−xg(t ,m)pg(t ,m)]fg(t−1)=marginal
probability that a contact attempt fails at time t for model
contact probability pg(t ,m) and mode indicator xg(t ,m)
rg(t ,m)=participation probability given contact.
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Adaptive Design: Mode Switching

Optimize with respect to xg(t ,m).
Constraints

∑m xg(t ,m)≤ 1 (only choose one mode at a given contact
attempt).
∑t xg(t ,m)≤ kg(m) (budget constraint for a given mode.)

Too complex to solve directly, but can be reformulated as a
Markov decision problem starting from time T and solving
recursively.
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Adaptive Design: Mode Switching

Can implement by considering a variety of budget levels
and the associated response rate under the optimal
design.

 

 

  

Does this design introduce potential biases?
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Responsive design

In the examples above measures such as response
probabilities and costs treated as known.
Groves and Heeringa (2006) laid out an initial view of
responsive design.
Design phase: stable periods of data collection: mode,
recruitment, non-contact and non-response follow-up, etc.

Embed experiments in early design phases: multiple vs.
single adult selection.

Phase capacity: stability of estimation within a given
design phase.

Point estimate stabilized after a certain number of
callbacks.

19 / 58



Responsive design: Stopping rules

In practice phase capacity has often been implemented
through stopping rules.
Stop once data suggest changes in estimators are
sufficiently small.

Rao et al. 2008: stop when wave and interaction between
key predictors of nonresponse and wave are not significant,
or when changes in key outcomes are sufficiently small.
Wagner and Raghunathan (2010): predict future outcomes
based on available data, then subsample a set of cases to
collect actual values, and cease if the probability that the
predicted mean under the imputed values and using the
actual data is sufficiently small.
Lewis (2017, 2019) replaces the idea of imputation in the
Rao et al. and Wagner and Raghunathan approach with
non-response weighting.

Cease data collection once differences in weighted
estimators are no longer statistically significant.
Use power calculations to determine significance level
(post-hoc?)
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Responsive design: Case prioritization

Attempt to reduce non-response bias by changing priorities
for contact in process.
Key insight comes from nonresponse bias of mean
expressed as covariance between the survey variable y
and the response propensity ρ divided by response rate
(Bethlehem 2002):

Bias(y r ) =
σy ,ρ

ρ

Focus in on reducing σy ,p rather than increasing p
(Peytchev et al. 2010).
R-indicator (Schouten et al. 2009) provides a sort of
“surrogate” for response bias by focusing on the variability
in the response propensities: R = 1−2Sρ ,
S2

p = (N−1)1
∑

N
i=1(ρi −ρ)2

R̂ replaces S2
ρ with sp, the sample variances of the

estimated propensities; bias adjusted version available
(Shlomo et al. 2012).
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Responsive design: Case prioritization

Schouten and Shlomo (2017) use partial R-indicators:
S2(ρ | Z ) = ∑k Pk (ρk −ρ)2 for a single categorical variable
Z with K levels used in the overall prediction ρ.
Find set of variables with statistically significant partial R
indicators and re-stratify based on cross classification.
Recompute partial R indicator and order by significance.
Select the maximum number of cases available for
followup based on cost constraints prioritizing strata with
most significant partial R indicators.
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Responsive design: Evaluation

As pointed out by Tourangeau et al. (2017), the target of
responsive designs has been somewhat inconsistent.
Targeting high propensity respondents can increase bias
while simultaneously increasing sample size for a given
cost.
Increasing the R-indicator by recruiting fewer high
propensity subjects. can reduce response rates (while
perhaps reducing response bias) and decrease sample
sizes.

Bias-variance tradeoff

Reducing R-indicator increased estimated non-response
bias in Peytchev et al. (2010).
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Responsive design: Evaluation

R indicator uses the Cauchy-Schwartz inequality to note
that response bias in bounded by the variance of the
propensities.

Bias(y r ) =
σy ,ρ

ρ
≤ S(ρ)S(y)

ρ
=

(1−2R(ρ))S(y)
2ρ

Non-linear relationships between probability of selection
and outcome. means that bias is not a direct linear
function of a given value of R however.
If

Yi = α +βρi + εi , εi ∼ (0,σ2), εi ⊥ ρi

then we can show Cov(Y ,ρ)≈ βS2(ρ) and
B(y r )≈

β

ρ

(
1−R(ρ̂)

2

)
.

But if there is an additional non-linear f (ρi) term in the
mean function, then B(y r )≈

β

ρ

(
1−R(ρ̂)

2 +Cov(f (ρ),ρ)
)

.
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Responsive design: Evaluation

Compare Yi ∼ N(ρi ,1) with Yi ∼ N(ρi +10ρ4
i ,1),

i = 1, ...,10000.
Suppose ρi ∼ UNI(0, .5), with sample size of n = 500.
Standardized bias increases from .08 to .13 while
R-indicator remains .76
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Responsive design: Evaluation

Two major issues in responsive design research currently
open.
What should we be targeting in our responsive designs?

 
How can we best incorporate prior information in our
design decisions?
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Responsive design: Target

Tourangeau et al. (2017) suggest focusing on cases that
are most likely to affect final estimates, as a product of
response propensity, sample weight, and distance from
sample mean:

Vi = ρiwiDi , Di =

√
(ŷi − (y))T S−1(ŷi − (y))

or, accounting for cost, Vi/ĉi .
That cost term shows up rather innocuously.
How do we estimate that??? BIG issue going forward.
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Responsive design: Prior

Schouten et al. (2018) suggest using a Bayesian
framework to incorporate prior information.
Response propensities could be estimated from prior
waves of a survey and/or from a literature review to
construct an informative prior distribution that is then
combined with initial estimates via Bayes rule to provide a
posterior distribution to be used for targeting and design
changes.

Prior wave of the survey gives logistic regression estimates
of response propensity based on a set of covariates xi as
β̂0 with variance estimate v(β̂0).
Current wave of survey gives logistic regression estimates
of response propensity based on same set of covariates as
β̂ with variance estimate v(β̂ ).
Point estimate of β is then obtained (assuming an
approximate normal distribution for both) as(

v(β̂0)
−1 +v(β̂ )−1

)−1(
v(β̂0)

−1
β̂0 +v(β̂ )−1

β̂

)
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Predicting Costs in Surveys

No existing literature on cost prediction in surveys(!)
Wagner et al. (2019) use a linear mixed model (LMM) and
a Bayesian additive regression tree (BART) model
(Chipman et al. 2010) to predict interviewer hours in the
National Survey for Family Growth.
Predict Phase 2 (two week non-response followup) costs
based on Phase I data.
Data from the first 22 quarters were used to make
predictions that were assessed using data from the last 6
quarters.
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Predicting Costs in Surveys

Predictors included geography, local Census tract
information, commercial estimates of age and income as a
target household, and paradata based on interviewer
observations, level of effort, and interviewer IDs.
LMM suggested individual interviewers explain around
20-25% of overall variance.
Both models produced reasonably good predictions:
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Predicting Response using Bayesian Methods

National Survey of Family Growth is a repeated
cross-sectional survey collected in quarterly replicates.

Restricted to persons 15-49, and begins with a household
screening interview for the presence of such persons.

West et al. (2019) considering the use of informative priors
to improve estimation of probability of responding to a
screening interview.
Elicited priors

1. Using eight prior quarterly data collection periods.
2. Using a literature review of propensity models that included

similar covariates.
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Eliciting Priors using Historical Data

Fit discrete time-to-event models of the form

log

(
P(Yit) = 1 | Xit

1−P(Yit) = 1 | Xit

)
= β

T Xit

Consider two approaches
Use the most recent period to obtain MLE β̂ and associated
variance estimate v(β̂ ), and use prior N(β̂ ,v(β̂ )).
Combine previous eight quarters by obtaining MLEs and
associated variance estimates β̂q and v(β̂q) for q = 1, ...,8,
and use precision-weighted prior
N(∑q v(β̂q)

−1β̂q ,(∑q v(β̂q)
−1/8)−1).

Predictors included geography, local Census tract
information, commercial estimates of age and income as a
target household, and paradata based on interviewer
observations and level of effort.
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Eliciting Priors using Literature Review

Found eight studies where response propensity was
predicted using one or more of estimators used in the
historical data: β̂pi for i = 1, ...,Kp, where Kp is the number
of studies where the pth predictor was used.

Prior for the pth components given by N(β̂p,v(β̂p)), where
β̂p = K−1

p ∑
Kp
i=1 β̂pi , v(β̂p) = (Kp−1)−1

∑
Kp
i=1(β̂pi − β̂p)

2.

Note that the prior variance obtained using the literature
review assumes independence between each predictor
regression estimator, whereas the data-based prior allows
for empirically estimated correlations.
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Evaluating the Quality of the Bayesian Prediction

1. Compute predicted probability of response exp(β T
psXit )

1+exp(β T
psXit )

for

each subject, where βps is the posterior mean of β given
by (v(β̂ )−1 +V (βp)

−1)−1(v(β̂ )−1β̂t +V (βp)
−1βp) where βp

and V (βp) are the prior means and variance, and t is the
day of the interview for that quarter (t = 7, ...,84).

2. Compute difference between this predicted probability and
the benchmark predicted probability that uses all the data
for the quarter, for each day.
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Evaluating the Quality of the Bayesian Prediction

 

Major gains for Bayesian approach, especially in the
middle period of data collection.
Effect of prior information diminishes in later period
Precision weighted prior does best, although last quarter
does nearly as well.
Use of literature-based prior still an improvement over
ignoring prior data.
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Fully Integrated Response Design Methodology
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Fully Integrated Response Design Methodology

At each phase
1. Use the results of West et al. 2019 to obtain posterior estimates of

response propensity for all unresolved cases.
2. Use available paradata and sampling frame information to impute

missing values for all unresolved cases for a key survey variable.
3. Use the results of Wagner et al. 2019 to predict future costs of for

all unresolved cases.
4. Repeat 2) and 3) after applying responsive design decision rules

to each observation, and estimate the product of predicted cost
and the root mean squared error (RMSE) for key survey variable
using the results from 2) obtained using the full data as true value.
For multiple phases, 2) and 3) should incorporate future decision
rules based on predicted outcomes

5. Repeat 4) for a variety of decisions. Find the decision rule that
minimizes the product of cost and RMSE and implement that rule

Repeat for each phase based on observed outcomes and
remaining unresolved cases.
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Fully Integrated Response Design Methodology

Currently implementing in National Survey of College
Graduates.
Data collection schedule:

Two web invites (Week 1 and 5)
Mailing (Week 8)

Replace with web invite
Telephone NRFU (Week 12)

No NRFU
Second mailing (Week 18)

Replace with web invite
Third web invite (Week 23)

No invite

Using cutpoints at 5th, 10th,...,50th percentiles of response
propensity.
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Fully Integrated Response Design Methodology

Alternatively could order by the estimated effect of a given
observation on product of cost and variance:

ψj =
(

Ĉ− Ĉj

)(
B̂2

j +

(
n

n−1

)
V̂
)

where Ĉ = ∑
n0
i=1 Ci +∑

n
i=n0+1 Ĉi , V̂ = 1

n(n−1)

[
Ŷ2− 1

n Ŷ 2
]

for

Ŷ2 = ∑
n0
i=1 y2

i +∑
n
i=n0+1 Ŷ 2

i , Ŷ = ∑
n0
i=1 yi +∑

n
i=n0+1 Ŷi , and

B̂2
j =

(
1

n−1

(
Ŷ − Ŷj

)
− 1

n Ŷ
)2

Compute ψsj where the elements in sj consist of the s−1
previously selected elements that minimized ψs−1; find the j th
element that minimizes ψsj to obtain ψs.

Compute δs = ψ0−ψs for s = 1, ...,n−n0 and ψ0 = ĈV̂ , and
choose the value of s that maximizes δs

Smooth estimator of δs to stabilize.

Might need to limit increase in MSE to avoid getting too large.
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Link to Adaptive Clinical Trials

Often other fields of statistics (e.g. causal inference)
“reinvent the wheel” for methods that have already been
established in survey statistics.
Here we might have the opposite situation: adaptive
designs in clinical trials have long grappled with issues
such as when to stop trials once benefit has been
established, or how to maximize benefit in a population
with heterogenous responses to treatment (Tourangeau et
al. 2017).

Different problems but similar solutions – update data
collection based on information obtained in the study.
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Link to Adaptive Clinical Trials

Group sequential trials: terminate early if drug shows
effect (Jennison and Turnbull 1999).
Sample size modification: adjust sample size based on
early measures of variability in outcome (Cox 1952).
Outcome adaptive trial: use initial results to “bias”
randomization toward successful treatments (Zelen 1969).
Enrichment designs: inclusion/exclusion criteria designed
to concentrate treatment on subpopulation most likely to
benefit (Wang et a. 2009).

Stopping rules can play havoc with statistical inference
(Korn 2001); adaptive trials can mislead (Hey et al. 2015).

What can we do to borrow from this literature while
minimizing problems with it?
“The survey field is missing a link with the adaptive clinical
trial field, which has become very sophisticated on the
modeling side. If I were 30 years old and smart enough,
that would be the link I would try to make.” (Bob Groves,
from Habermann, Kennedy, and Lahiri 2017).
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Impact on Estimation

Often the adaptive and especially the responsive design
literature ignores the potential impact of design decisions
on estimation.
Not always: Elliott et al. (2000) weights underrepresented
later callbacks to provide design-consistent estimation.
Balancing on response propensity also implicitly at least
considers a sort of design-sensitive estimation.
But other recent examples may, at least implicitly, rely on
model assumptions to drop cases based on predicted
values.

Could drop stochastically and introduce weights for design
based estimation or probability of retention in model
estimation (Zhang and Little 2009).
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Where Do We Go From Here?

“[The Census Bureau wasn’t] going to abandon traditional
sample surveys, but maybe they could patch through with
responsive design. We won’t know for ten years whether that is
successful.” (Bob Groves, from Habermann, Kennedy, and
Lahiri 2017).

We are two years into Bob’s cloudy crystal ball.
A great deal of work is being done in a myriad of direction
on response design.
Major questions going forward:

What are we targeting? More focus on optimization.
How do changes affect inference? More focus on
estimation.
What data can we collect and how can we use it efficiently?
More focus on paradata and its use in optimization and
estimation.
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