Bayesian learning of design parameters for a new survey

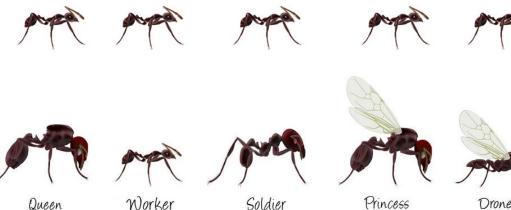
Joep Burger*, Nino Mushkudiani*, Barry Schouten*† *Statistics Netherlands †Utrecht University

Survey design

- Features •
 - Incentive
 - Mode (Web, CATI, CAPI, mix)

Queen

- ...
- Uniform ullet
- Adaptive •



Drone

ASD

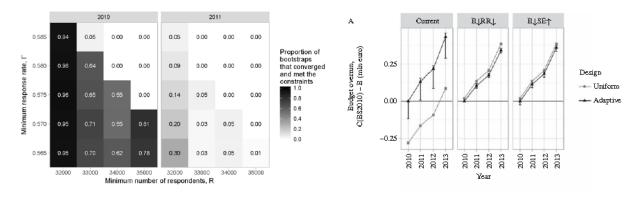
- Constrained optimization problem
 - allocation parameter $p_{s,i}$

$$\max_{\substack{p_{s,i} \\ s.t.}} f(p_{s,i})$$

s.t. $g(p_{s,i}) = G$
 $h(p_{s,i}) \le H$

Sensitivity

- *f*, *g*, *h* also functions of design parameters
- ASD
 - fairly robust to imprecision
 - sensitive to realistic dynamics



ASD structure

ASD performance

Bayesian analysis

- Probability
 - Frequentistic: frequency in the long run
 - Bayesian: degree of belief

•
$$P(\theta|y) = P(\theta) \frac{P(y|\theta)}{P(y)}$$

- Advantages
 - Include uncertainty about θ
 - Update prior knowledge with new survey data
- Bayesian ASD: Schouten et al. 2017

New survey

- Prior information $P(\theta)$?
 - Other surveys
 - Expert knowledge

Case study: EU-SILC

Case study: EU-SILC

- European Union Statistics on Income and Living Conditions (2003)
- 2016: redesign
- Per subprovince two-stage cluster sampling

– PSU (municipality):
$$\pi_j = \frac{N_j}{N}$$
 (PPS)

- SSU (16+): $\pi_{ij} = \frac{n_h}{r_h}$ ($i \in h$: income, hhsize, age)

- Web–CATI
- Experiment: 50% conditional incentive €10

•
$$n_1 = 16$$
k, $n_2 = 6$ k

BADEN framework light

• Response propensity

$$\rho_{i}(s_{1,2}) = \rho_{1,i}(s_{1}) + (1 - \rho_{1,i}(s_{1}))\rho_{2,i}(s_{1,2})$$

$$s_{1} \in \{\text{Web}^{+}, \text{Web}^{-}\}$$

$$s_{2} \in \{\text{CATI}, s_{\emptyset}\}$$

• GLM \rightarrow likelihood

$$\Phi^{-1}(\rho_{t,i}(s_{1,t})) = X_i\beta_t(s_t)$$

• Prior

$$\beta_t(s_t) \sim N(\mu(s_t), \Sigma(s_t))$$

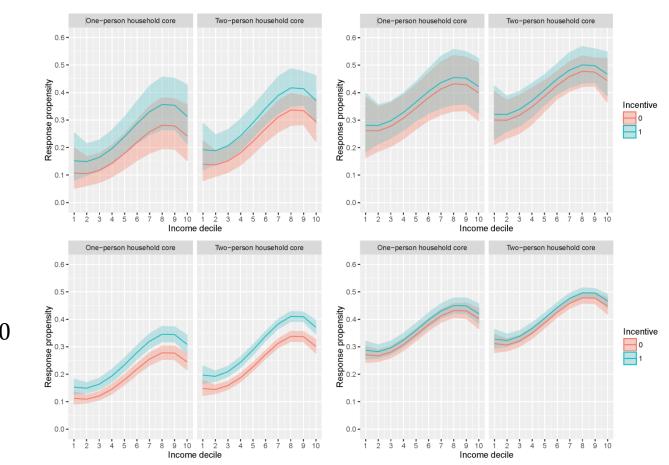
Prior information

- Other surveys
 - Labor Force Survey (134k)
 - Budget Survey (28k)
 - Housing Survey (78k)
 - Social Cohesion Survey (11k)
- Point estimates for $\rho_{1,i}(s_1)$ and $\rho_{2,i}(s_{1,2})$
- Distribution?

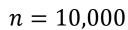
Prior distribution

- Simulate sample of size *n*
- Stratify: $n_g = \frac{N_g}{N}n$ (g: income_10 × hhsize_2)
- Assign incentive: Binom(*n*, 0.5)
- Link response propensities $\rho_{t,i}(s_{1,t})$
- For b = 1, ..., 100 iterations
 - Draw response $U_{t,b} \sim \operatorname{Binom}\left(n, \rho_{t,i}(s_{1,t})\right)$
 - Estimate $\beta_{t,b}$: $\Phi^{-1}\left(P(U_{t,b,i}=1)\right) = X_i\beta_{t,b}$
- $\mu(s_t), \Sigma(s_t)$

Priors



n = 1000



Posterior distribution

• Data:
$$U_{t,i} = \begin{cases} 1 & \text{if } Z_{t,i} > 0 \\ 0 & \text{if } Z_{t,i} \le 0 \end{cases}$$

- Gibbs sampling
 - Draw $Z_{t,i}$ from truncated $N(X_i \mu_t, 1)$

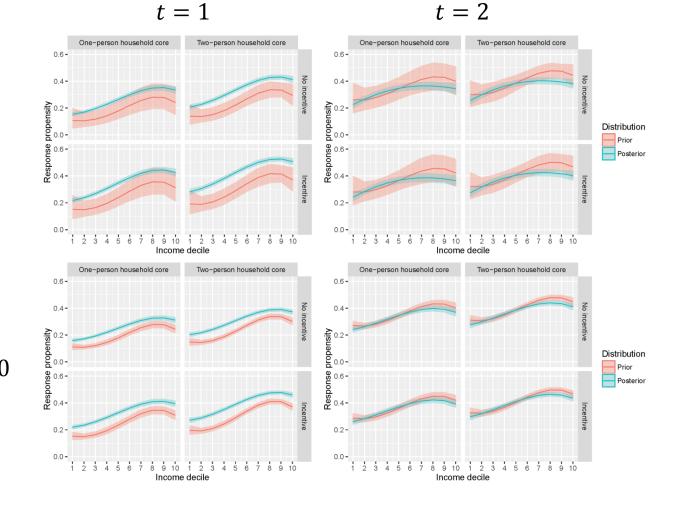
$$-\mu_{\text{full}}(s) = \Sigma_{\text{full}}(s) \left(\left(\Sigma(s) \right)^{-1} \mu(s) + X' Z_t \right)$$

$$-\Sigma_{\text{full}}(s) = \left(\left(\Sigma(s)\right)^{-1} + X'X\right)^{-1}$$

- Draw $\beta_t(s)$ from $N(\mu_{\text{full}}(s), \Sigma_{\text{full}}(s))$
- 10,000 iterations

Posteriors

n = 1000



n = 10,000

Quality indicators

• Response rate

$$RR(s_{1,2}) = \frac{1}{\sum_{i=1}^{n} d_i} \sum_{i=1}^{n} d_i \rho_i(s_{1,2})$$

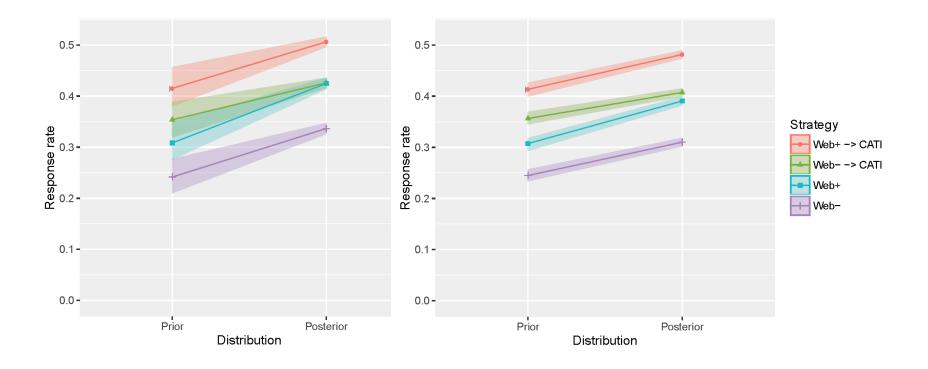
• Coefficient of variation

$$CV(X, s_{1,2}) = \frac{\sqrt{\sum_{i=1}^{n} d_i} \sum_{i=1}^{n} d_i (\rho_i(s_{1,2}) - RR(s_{1,2}))^2}{RR(s_{1,2})}$$

Response rate

n = 1000

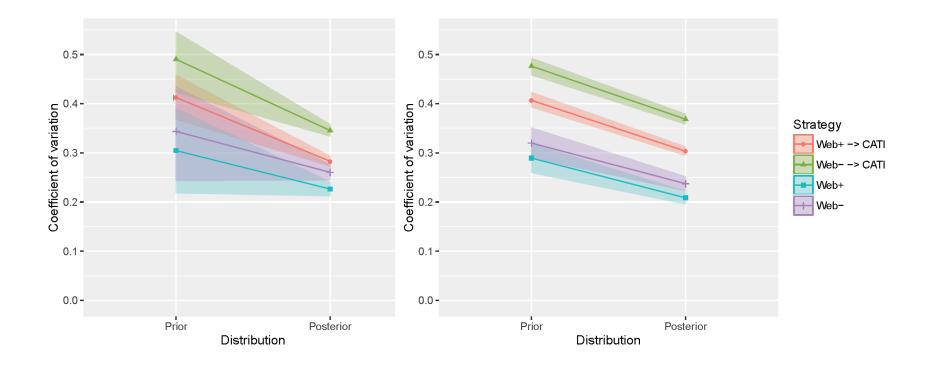
n = 10,000



Coefficient of variation

n = 1000

n = 10,000



Conclusions

- Bayesian approach logical
- BADEN framework general enough
- New survey: prior influential
- Reasonable ball park
- Conditional incentive

 Higher RR
 - Lower CV
- CATI follow-up
 - Higher RR
 - Higher CV

Future

- Paradata
- Other design parameters

– Costs

- Measurement effect
- Other quality indicators
- Optimization

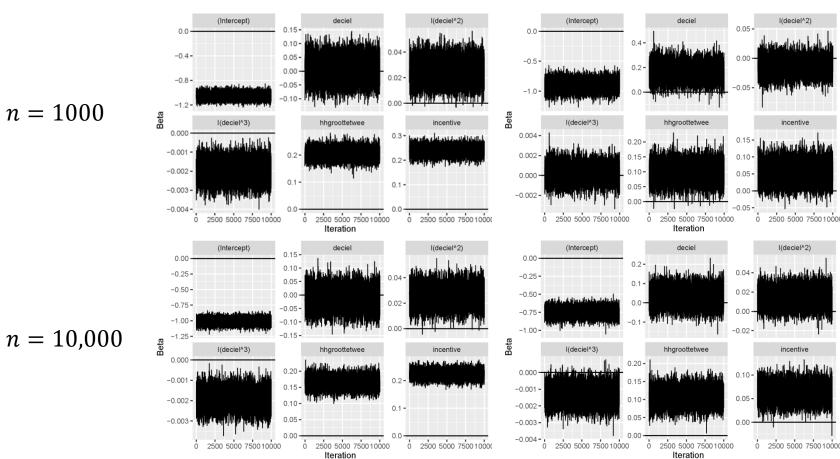
Soldier

Queen

Worker

Convergence

t = 1



t = 2