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Case study background 

 U.S. Department of Education, National Center for Education Statistics 

 Nationally representative, longitudinal study of 23,000+ 9th graders in 2009 

 Study design: 

– Base year (2009) 

– First follow-up (2012) 

– 2013 Update (2013) 

– Second follow-up (2016) 
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High School Longitudinal Study of 2009 (HSLS:09)  

HSLS:09 second follow-up summary 

 Calibration subsample and main sample 

 Several distinct phases of data collection with corresponding interventions 

 3 study subgroups of interest 

 Response propensity model to maximize efficient allocation of project resources 

 Model to predict likelihood of contributing to nonresponse bias, used to target sample members 

for interventions 



Case study background 

 Fielded 8 weeks in advance of the main sample to experimentally test the effectiveness of 

planned interventions in phase 1 and phase 2 

 Subsample of about 15 percent of total sample, n = 3,300 

 Interventions applied over 3 phases of interest 
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Calibration subsample 

Phases 

 Phase 1: baseline incentive (monetary) 

 Phase 2: Incentive boosts (monetary) 

 Phase 3: Field interviewing (CAPI), abbreviated interview; calibration and main sample aligned  

 

Phase 1 

Calibration sample 

Main sample 

Phase 2 Phase 3 

Phase 1 Phase 2 



Case study background 

 Stratified based on previous-round experience with cohort 

 Differentiated so that customized interventions could be developed (informed by prior rounds), and 

applied to subgroups independently 
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Subgroups 

Subgroup A 
High school late / 

alternative / 

noncompleters 

 

Had not completed HS; 

were still enrolled in HS; 

received alt. credential; 

completed HS late; had 

dropout with unknown 

HS completion status 

Subgroup B 
Ultra-cooperative 

respondents  

 

 

HS completers that 

participated in  

base year, first follow-

up, and 2013 Update 

without incentive offer 

Subgroup C 
All other cases 

 

 

 

Early / on-time regular 

diploma completers (not 

subgroup B) and cases 

with unknown HS 

completion status (not 

subgroup A) 

Second follow-up subgroups 
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Modeling 

Response propensity model 

Estimates unit-level response probability 

 Covariates: Model covariates combine paradata (prior-round 

paradata and demographics) and key variables of interest found 

to maximize prior-round response prediction 

 Dependent variable: 2013 Update response (immediately prior 

round) 

 Estimation: Once, prior to data collection start 

 

Bias likelihood model 

Identifies nonrespondents in the most underrepresented groups 

 Covariates: Chosen such that differences should proxy 

nonresponse bias; excludes paradata 

 Dependent variable: Current-round response 

 Estimation: Re-estimated throughout data collection, before 

intervention deployment 

Application 

Used in phase 3 (field 

interviewing) to exclude 

pursuit of low response 

propensity cases  

Application 

Used in phase 2 (boosts) 

and phase 3 (field 

interviewing) to target cases 

for incentive increases and 

field interviewing 
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Calibration-informed adaptive components 

Incentives selected 

Redefined subgroup B 

 Best-performing incentives (baseline and boosts) were offered to main sample cases 

 

 To conserve project resources, the subgroup B (ultra-cooperative) set definition 

was expanded for the main study only 

 Expanded definition sought to identify relatively homogeneous group of highly 

cooperative sample members within subgroup C (all other cases), one key 

attribute was response propensity > 0.90 

 Portion (19 percent) of subgroup C was reallocated to subgroup B, based on 

new definition 

 Redefining subgroup categorization could have impact on use of calibration 

sample outcomes to estimate behavior of main sample 
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Goals 

 Formally incorporate prior knowledge derived from sample into models to estimate important 

survey design parameters 

– Sample member response propensities 

– Contact propensities 

– Participation costs 

– Contact costs 

 Update knowledge as data collection progresses 

 Goals are naturally well-suited to Bayesian framework 

 Exploratory case study using HSLS:09 data 

 

 

 

Models 

In this exploratory 

analysis we focus only 

on the response 

propensity and 

contact models 
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BADEN Gibbs sampler 

Approach 

 Leveraged Gibbs sampler and approach developed by Schouten et al. (2017) to estimate survey 

design parameters 

 Gibbs sampler allows for estimation of joint posterior distributions of interest that cannot be 

expressed in closed form 

 

 Generate simulation data set using 

– Known distribution of auxiliary variables (of interest) 

– Auxiliary variables were kept simple: only sex (Female, Male) and subgroup (A, B, C) 

– Aggregated sample paradata through phases (e.g., probability of contact, probability of participation) 

 Elicit priors (informed and uninformed)  

 Construct generalized linear models to estimate design parameters of interest  

– Response propensity (probit) 

– Contact propensity (probit) 

 Estimate posterior regression parameters using Gibbs sampler 



Simulation background 
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BADEN Gibbs sampler 

Priors 

Prior distribution for the regression parameters is multivariate normal 

 

 Informative prior: elicited from calibration sample data 

 

 Uninformative prior: equivalent variance for all covariates; priors express lack of knowledge at 

the start of data collection  
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Posterior response model coefficients 
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Impact of redefining subgroup B 

 Very large differences on posterior distribution of regression coefficients associated with 

subgroup (particularly subgroup B), depending on usage of informative or uninformative priors 

 Suggests calibration-informed prior is misspecified 

 Especially marked effect during phase 1, before incentive boosts deployed in phase 2 

 Despite efforts to redefine subgroup B with similarly cooperative respondents, changes to prior 

mid-data collection can have substantive impacts on posterior distributions 

 Testing interventions with calibration sample may have caused further misspecification 

 

 

 

Informative Uninformative 



Posterior contact model coefficients 
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Posterior contact model coefficients 
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Impact of redefining subgroup B 

 Similar impact for contact parameters not observed 

 Subgroup B and subgroup C do not appear to differ in their parameters for contact, but their 

behavior for response does seem to significantly differ under the calibration study (i.e., informed 

priors) 

 

 

 

Informative Uninformative 



Discussion 
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Calibration-informed priors 

 While being responsive to client and resource constrains, adaptations mid-collection can reduce 

utility of prior with cascading effect on posterior 

 Prior and observed data should share the same underlying probability mechanism in order to 

provide added value 

 Making decisions based on the calibration sample with misspecified prior may lead to different 

actions being applied during the main sample; takes time for effect of prior to be reduced 

 Use of calibration study as prior (with goal of experimentally testing incentives, definitions, etc.) vs. 

use of field test (closer to a survey “dry run”) as prior 

 

Next steps 

 Testing various calibration sample sizes with various main sample sizes 

 Considering methods to formally attach less weight to prior that we know differs. Any utility? 

 Using estimates from phase one as priors for phase two, etc. Given phase differences, does this 

make sense? 
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