

Do Interviewers moderate the effect of monetary incentives on response rates in household interview surveys?

Eliud Kibuchi, Patrick Sturgis, Gabriele Durrant, Olga Maslovskaya University of Southampton

BADEN Network Workshop 6th to 7th Nov 2017 University of Michigan

Background and motivation

- Monetary incentives are known to increase response rates (Singer et al 1999)
- Some interviewers are more effective at eliciting cooperation than others (Durrant et al. 2010; Durrant, D'Arrigo, and Steele 2013)
- But little is known about whether & how interviewers differ in effectiveness of deploying incentives to promote survey response and cooperation
- How might this happen?
 - Interviewers 'tailor' deployment by highlighting incentives at addresses where they are most effective (Groves and Couper 1996)
 - Interviewers vary in their beliefs about effectiveness of incentives (Singer et al 2000; Lynn 2001)

NCRM National Centre for Research Methods

Research Questions & empirical strategy

- RQ1: Do interviewers differentially influence the effectiveness of incentives in increasing survey participation?
- RQ2: Are interviewer characteristics associated with effectiveness of incentive deployment?
- ES1: face-to-face household surveys containing randomised incentive experiments
- ES2: Multi-level models predicting response outcome as function of incentive condition and covariates
- ES3: Interviewer level random coefficient for incentive condition

National Centre for Research Methods

Data

Understanding Society Innovation Panel

- wave 1 data consisting of three random experimental group:
 - Group 1: £5 per adult interviewed; Group 2: £10 per adult interviewed; Group 3: £5 per adult interviewed rising to £10 if all adults in household are interviewed
- Each household also received unconditional cash voucher
- Combined groups 2 and 3 into one incentive group

National Survey for Wales 2015

- One randomly selected adult aged 16+
- Conditional incentive
- experimental groups: Group 1: £10 incentive Group 2: no incentive

- NSW 2016
 - Each address on odd numbered quota offered a conditional £5, and addressed on even numbered offered no incentive
 - Experiment terminated earlier due to low response and a new £10 incentive offered onwards
- Number of households issued incentives grouped into incentive or no incentive

Survey	Incentive (£10)	Low (no) Incentive
IP	1,680	843 (£5 incentive)
NSW 2015	2,960	2,828
NSW 2016	3,640	3,467

• Response rate by incentive group for both surveys

		Response Frequency (%)	Nonresponse Frequency (%)	Total
Innovation Panel	Incentive	1,020 (61.4%)	640 (38.6%)	1,660
	No Incentive	469 (56.1%)	367 (43.9%)	836
	Total	1489	1007	2,496
NSW 2015	Incentive	1,504 (58.7%)	1, 059 (41.3%)	2,563
	No Incentive	1,319 (54.1%)	1,119 (45.9%)	2,439
	Total	2823	2178	5,001

• Cooperation rate by incentive group for both surveys

		Response Frequency (%)	Nonresponse Frequency (%)	
Innovation Panel	Incentive	1,020 (69.2%)	453 (30.8%)	1,473
	No Incentive	469 (66.8%)	233 (33.2%)	702
	Total	1489	686	2,175
NSW 2015	Incentive	1,504 (71.8%)	591 (28.2%)	2,095
	No Incentive	1,319 (67.0%)	649 (33.0%)	1,968
	Total	2,823	1,240	4,063

Explanatory and Response Variables

- Interviewer observations (only for IP data)
- Geographical and area variables (urban/rural, UK regional indicator (IP only))
- Interviewer characteristics (Age, gender, interviewer experience, and race)
- Response Outcome

 $y_{i(j)} = \begin{cases} 1 & \text{household response} \\ 0 & \text{household nonresponse} \end{cases}$: for household and interviewer

 Gives the probability that contacted household and interviewed by interviewer will cooperate to a survey

Definition of outcome

- Survey response based on AAPOR RR2 $RR2 = \frac{(I+P)}{(I+P) + (R+NC+O) + (UE(NC) + UE)}$
- Survey cooperation

$$CR2 = \frac{(I+P)}{(I+P)+(R)}$$

RR=Response Rate, I = Interview,

P = Partial Interviews, R = Refusals,

NC = Non-Contacts , O = Other Unproductive,

UE(NC) = Unknown Eligibility (non-contacted), and UE = Unknown Eligibility

NCRM National Centre for Research Methods

Models

- Multilevel cross-classified response propensity logistic models
- Why cross-classified multilevel models?
 - Allows the variation in the response outcome to be partitioned into household, interviewer and area levels
 - Disentangles interviewer and area effects on survey response and cooperation
 - Enables to vary incentives effects on survey response and cooperation across interviewers

NCRM National Centre for Research Methods

Models

Model takes the form

$$logit(\pi_{i(jk)}) = log\left(\frac{\pi_{i(jk)}}{1 - \pi_{i(jk)}}\right) = \beta_{0(jk)} + \sum_{h=1}^{r} \beta_{hi(jk)} x_{hi(jk)} + \mu_{(jk)} + \nu_{k}$$

- μ_0 and ν_0 represent variance for intercept across interviewers and areas assumed to have a normal distribution with means zero and variance $\sigma_{\mu 0}^2$ and $\sigma_{\nu 0}^2$ respectively
- μ_1 represents variance for incentive across interviewers and assumed to have a mean zero and variance $\sigma_{\mu_1}^2$
- The changes in random coefficient with respect to random intercept are assessed using covariance defined as σ_{μ01}
- Standard multilevel models used for NSW 2015 and NSW 2015
 - Areas not provided to protect interviewers identity

National Centre for Research Methods

Models

Specification of models fitted

Model	Fixed and random components specified
1: Base	Incentive
2: Random Intercept (interviewers)	Model 1 + random intercept (interviewers)
3: Random Intercept (areas)	Model 1 + random intercept (areas)
4 : Random Intercept (interviewers & areas)	Model 1 + random intercept (interviewers + areas)
5: model 4 + Random coefficient (interviewer)	M4 + incentive random coefficient across interviewers
6 : model 5 + interviewer observations	M5 + interviewer observations
7: model 6 + geographical areas8: model 7 + interviewer characteristics	M6 + area level variables M7 + interviewer characteristics

Area effects are only accounted for in IP data. Data obtained from National Survey for Wales did not have smaller geographical regions to protect interviewers identity

Results summary

- The DIC change between random intercept and random coefficient models for response and cooperation respectively indicate that incentives do vary significantly across interviewers for IP and NSW
- Size of effect reduced when controlling for area differences
- Positive covariance between random intercept & random slope (interviewer effect on incentives higher at higher response rates)
- None of the interviewer characteristics are significantly related to incentive effectiveness

Results

Predicted probabilities for survey response and cooperation in IP with no area controls

Results

Predicted probabilities for survey response and cooperation in IP with area controls

Results

Predicted probabilities for survey response and cooperation in NSW 2015, no area controls

Conclusions

- Incentive effect on response and cooperation varies across interviewers
- This is reduced when differences in area composition are controlled for
- Interviewers who obtain higher response rates without incentives get 'more bang from the incentive buck'
- Interviewer characteristics unrelated to deployment effectiveness
- Possible that other interviewer characteristics (attitudes, beliefs) might be more influential

NCRM National Centre for Research Methods