Adaptive, Responsive and Tailored Designs:

A Research Agenda

Paul Biemer RTI International University of North Carolina at Chapel Hill

5th Workshop on Adaptive and Responsive Survey Design November 6-7, 2017 Ann Arbor, MI

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Field work management (best practices of the 70's & 80's)

Continuous Quality Improvement (CQI) for field operations (Morganstein & Marker, 1997)

Adaptive Design (Wagner, 2008)

Responsive Design (Groves & Heeringa, 2006)

Tailored Design (Schouten, Calinescu and Luiten, 2013) Adaptive Total Design (ATD) (Biemer, 2010; Eltinge, Biemer, & Holmberg, 2014)

Field work management (best practices of the 70's & 80's)

Continuous Quality Improvement (CQI) for field operations (Morganstein & Marker, 1997)

Adaptive Design

phased collection outcome prediction nonresponse bias mitigation

Responsive Design (Groves & Heeringa, 2006) Adaptive Total Design (ATD)

(Biemer, 2010; Eltinge, Biemer, & Holmberg, 2014)

Field work management (best practices of the 70's & 80's)

Continuous Quality Improvement (CQI) for field operations (Morganstein & Marker, 1997)

Responsive Design (Groves & Heeringa, 2006) Adaptive Total Design (ATD) (Biemer, 2010; Eltinge, Biemer, &

2014)

Adaptive Design

(Wagner, 2008)

Cost/error optimization mode tailoring

Field work management (best practices of the 70's & 80's)

Continuous Quality Improvement (CQI) for field operations (Morganstein & Marker, 1997)

Responsive Design (Groves & Heeringa, 2006) No phases; consideration of multiple error sources

Adaptive Design

(Wagner, 2008)

Adaptive Total Design (ATD) (Biemer, 2010; Eltinge, Biemer, & Holmberg, 2014)

Field work management (best practices of the 70's & 80's)

(Morg Emphasis on interaction effects Incorporates 6sigma techniques

Responsive Design (Groves & Heeringa, 2006) Adaptive Design (Wagner, 2008)

Adaptive Total Design (ATD) (Biemer, 2010; Eltinge, Biemer, & Holmberg, 2014)

Key Differences between these Data Collection Approaches

Defining Feature	Responsive	Tailored	Adaptive	ATD
Real time data/paradata monitoring	\checkmark	✓	✓	✓
Incorporates an experimental phase	\checkmark	✓		
Predicts survey outcomes	\checkmark	✓	✓	✓
Minimization of nonresponse error	\checkmark		\checkmark	
Phase capacity triggers intervention	\checkmark			
Data collection protocol tailored to subgroup to minimize cost/error		✓		
Monitors multiple error sources	✓	✓	✓	\checkmark
Monitors all major error sources				\checkmark
Monitors interaction effects across error sources				✓
Distinguishes between common and special cause variation				✓

Major research streams across approaches

- 1. Contact/response propensity modeling
- 2. Sample balancing
- 3. Response rate maximization
- 4. Metric visualization (dashboards, etc)
- 5. Bias and bias *risk* indicators
- 6. Real-time interventions to improve data quality
- 7. Total error monitoring in real time
- 8. Post-survey statistical adjustments

1. Contact/response propensity modeling – $\rho | \mathbf{X}$

- Estimation
 - Which propensity? Initial, final, contact, cooperation?
 - Estimating $\rho | \mathbf{X}$ prior to data collection: $\rho | \mathbf{X}_{old}$
 - Updating these estimates during data collection: $\alpha \rho | \mathbf{X}_{new} + (1-\alpha) \rho | \mathbf{X}_{old}$
 - Use of Bayesian methods for longitudinal surveys (Durrant, et al, 2017)
- Applications
 - Suppose we knew ρ 's exactly. How might the survey implementation strategy change to take advantage of this information?
 - E.g.,model-guided field collection protocols (Biemer, et al 2017)
 - Model-aided sampling (Berzofsky, et al, 2010)
 - Balancing ρ 's under restricted budgets
 - What methods are most effective for manipulating ρ 's for subgroups?

2. Sample balancing

- Benefits of sample balancing
 - Some evidence that balancing on X during data collection improves MSE after weighting by X (Schouten, et al, 2015; Sarndal and Lundquist, 2017)
- Representativity vs high RR (Lundquist & Särndal, 2013)
 - Bias can increase as response rate increases if $|\overline{Y}_R \overline{Y}_{NR}|$ also increases
 - Bias can increase as representativity on X increases if RR decreases
- Optimal selection of X for balancing
 - Is the best choice of **X** is one that maximizes Corr(X,Y)?
 - What is the best strategy for omnibus surveys? and longitudinal surveys?
- Balancing $\rho | \mathbf{X}$ versus minimizing: $| \hat{\mathbf{X}}_{S} \mathbf{X}_{P} |$ When to use each?

3. Response rate maximization

- Why maximize response rate?
 - Groves-Peytcheva data showed the nonresponse is a poor predictor of nonresponse bias.
 - However, it may be a good predictor of nonresponse bias risk
- How to maximize response rate?
 - Traditional means
 - more contact attempts, incentives, more effective interviewing methods, mode changes
 - Two-phase sampling
 - Provides an affordable strategy for increasing response rates
 - Selective matched cases substitution
 - Greater potential for reducing nonresponse bias

What does the response rate indicate?

"The nonresponse rate of a survey is a poor predictor of the bias of its various estimates" (Groves & Peytcheva, 2006)

Re-analysis: higher NR rate \rightarrow greater chance some items will have unacceptable NR biases.

The NR rate may be a good predictor of the *risk* of NR bias.

3. Response rate maximization

- Why maximize response rate?
 - Groves-Peytcheva data showed the nonresponse is a poor predictor of nonresponse bias.
 - However, it may be a good predictor of nonresponse bias risk
- How to maximize response rate?
 - Traditional means
 - more contact attempts, incentives, more effective interviewing methods, mode changes
 - Two-phase sampling
 - Provides an affordable strategy for increasing response rates
 - Selective matched cases substitution
 - Greater potential for reducing nonresponse bias

4. Metric visualization

Metric visualization – Some Issues for Research

- Bellwethers of *output* data quality
 - Sample representativity metrics
 - Indicators of residual (post-weighting) nonresponse bias
 - Indicators of measurement error e.g., interviewer performance via CARI
- The quality of paradata
 - Problems with level of effort data is well-documented
 - Error in response rate projections
- Methods for interpreting temporal variation in quality metrics
 - Use of process control charts to distinguish between common and special cause variation
 - Multi-dimensional metrics (e.g., inter-related dashboard gauges)

5. Bias and bias *risk* indicators

- Response rate
- R-indicator (Schouten, Cobben & Bethlehem, 2009)
- Balance indicators (Sarndal, 2011)
- Mahalonobis distance (Seastrom, 2016)
- Bias effect size (Biemer & Peytchev, 2015)

The Bias Effect Size (BES) Metric

Useful for post-survey NR bias analysis

Requires information on the survey variables for the nonrespondents Let \overline{y}_R denote the mean of the respondents Let \overline{y}_{NR} denote the mean of the nonrespondents

NR bias effect size:
$$BES = \frac{\overline{y}_R - \overline{y}_{NR}}{std.dev.(y)}$$

Cohen's rule Size of effect |BES|
of thumb for Small .2
Medium .5
Large .8

Absolute Bias Effect Size (BES) by Nonresponse Rates Re-analysis of Groves & Peytcheva (2008) Data

Absolute Bias Effect Size (BES) by Nonresponse Rates Re-analysis of Groves & Peytcheva (2008) Data

Better methods for estimating \overline{y}_{NR} are needed

Traditional methods

- Use extra efforts to convert nonrespondents such as:
 - incentives or greater incentives
 - shortened questionnaire
 - better interviewers
- External data sources
 - Administrative records

New methods

- Social media
- Selective matched case substitution
 - Used in list surveys with rich frames
 - Matched subs provide an estimate of $\mathcal{Y}_{\textit{NR}}$

6. Real-time Interventions to Improve Data Quality

- Increasing *p*|*X*
 - Enhanced call-back strategies
 - Tailored or model-guided (differential) incentives
 - Interviewer refusal/noncontact aversion training
 - Selective matched-case substitution
- Reducing measurement error
 - CARI monitoring and feedback
 - Alternate language questionnaires

- Reducing sampling error
 - Monitoring and controlling unequal weighting effects
 - Model-aided and adaptive sampling
- Reducing frame error
 - Open half-interval for field surveys
 - Check-list methods (e.g., CHUM)

7. Total survey error monitoring in real time

- Detection of interaction effects and the unintended consequences of error risk mitigation
 - CARI to mitigate interviewer fabrication
 - Multiple indicators to detect increases in measurement error
 - Graphical displays of interdependent metrics to detect unwanted interactions
- Metrics designed to simultaneous monitor multiple error sources
 - Classification error and nonresponse bias
 - Nonresponse followup and interviewer performance issues
 - Frame deficiencies and sampling error
 - Unequal weighting effects and nonresponse subsampling

8. Post-survey statistical adjustment

- Optimal variables selection for adjustment, especially for modeling ρ|X and the calibration to external controls
- One step methods for nonresponse and coverage adjustments
- Weighting methods for two phase sampling that control unequal weighting effects (Singh, et al)
- Methods for incorporating abbreviated questionnaire followup in nonresponse adjustments (Kott, 2017)

My Top 5 Research Priorities

- 1. Effective, real-time interventions to mitigate nonresponse error
- 2. Practical/effective methods for separating common and special cause variation in time series visualizations
- 3. Valid indicators of nonresponse, measurement error and their interactions
- 4. Innovative, low-cost approaches to training survey managers on the principles of adaptive design strategies and tools
- 5. Published examples illustrating the effectiveness of adaptive design approaches to improve data quality